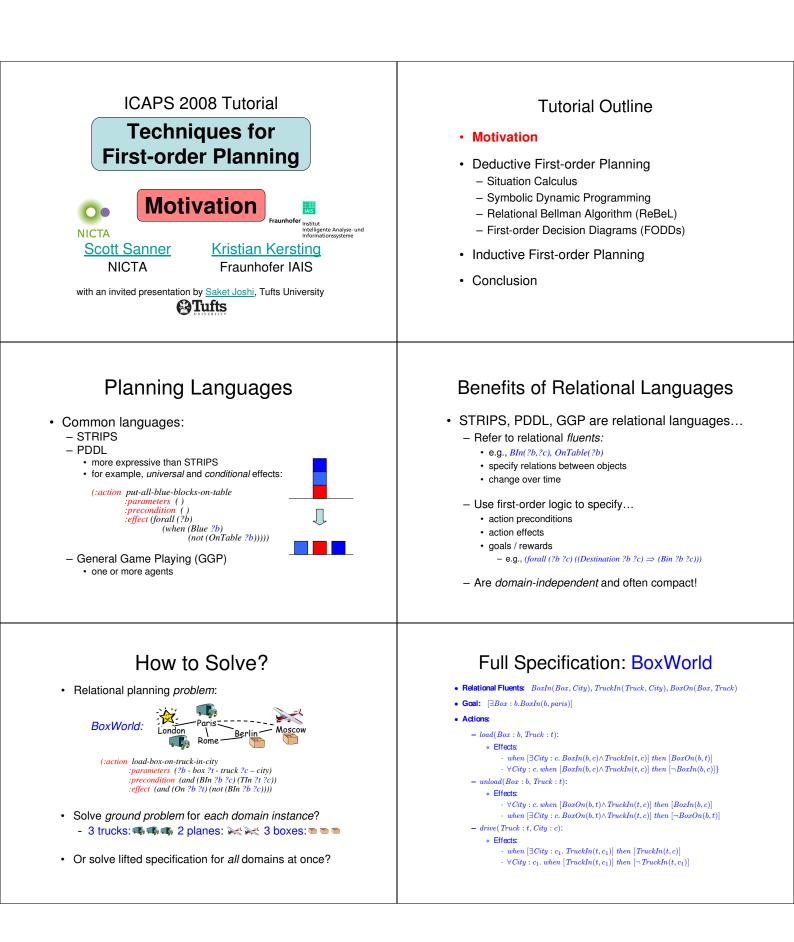
18th International Conference on Automated Planning and Scheduling September 14-18. 2008 Sydney, Australia

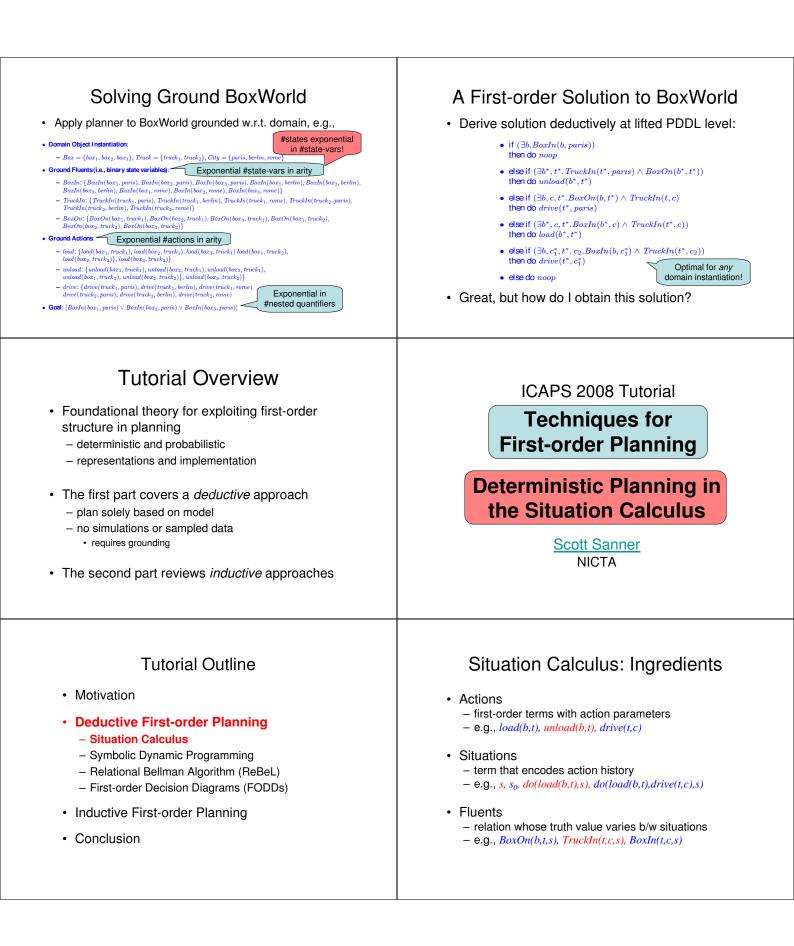
ICAPS-08 Tutorial on

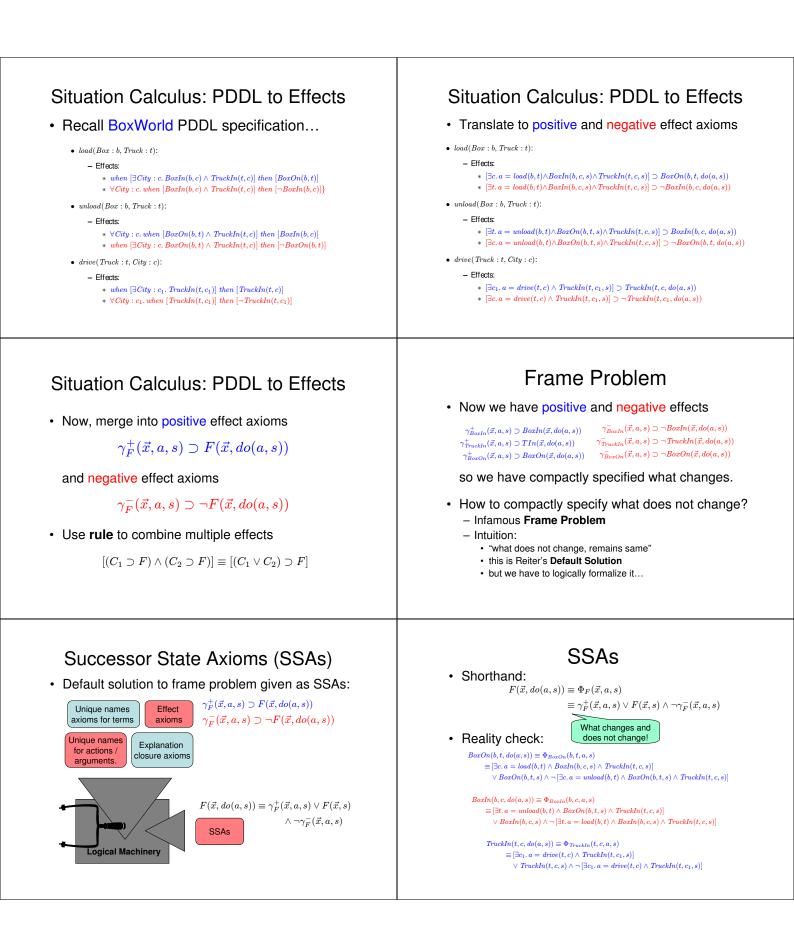
First-Order Planning Techniques

Organizers

Scott Sanner, NICTA (Australia) Kristian Kersting, Fraunhofer IAIS (Germany)



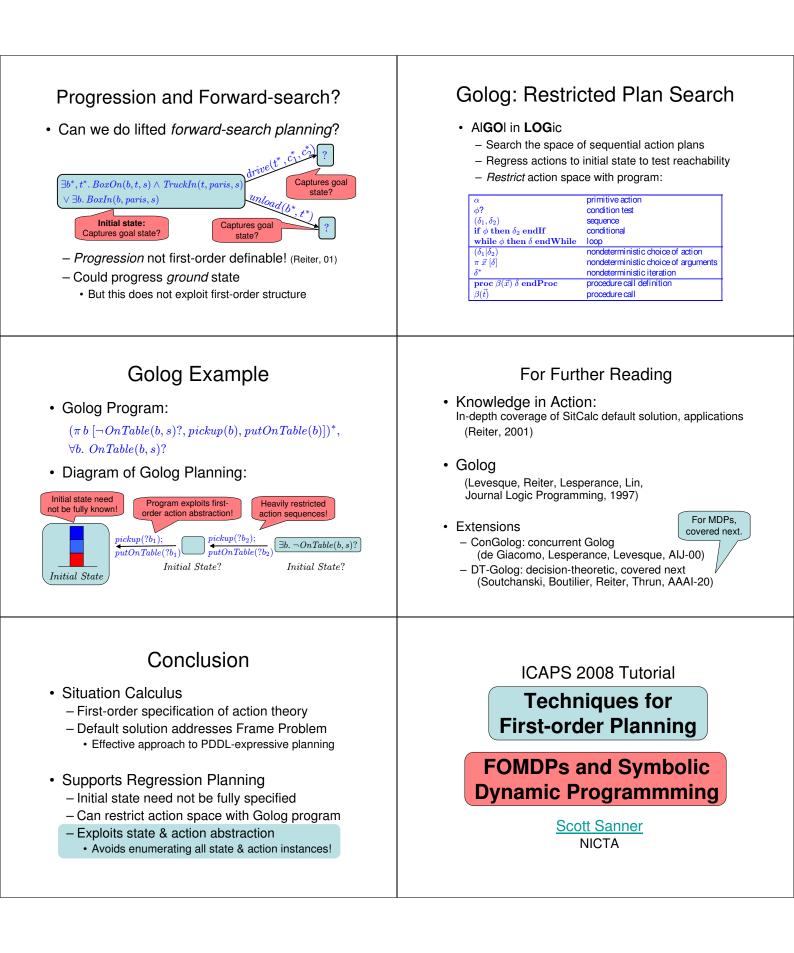


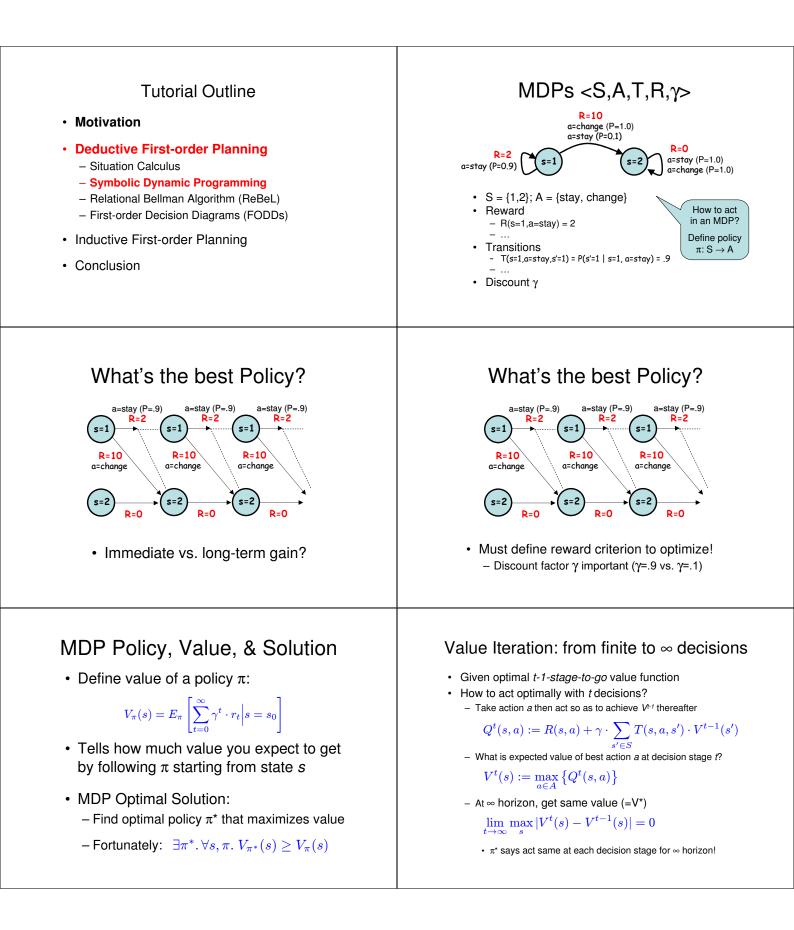


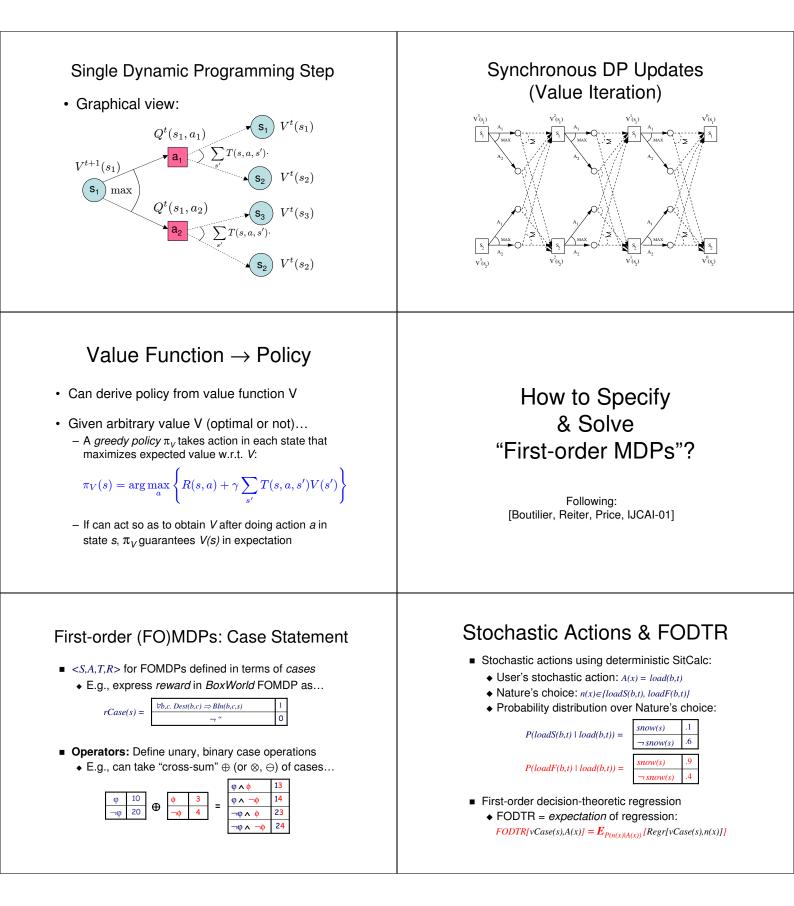
 $\exists b. BoxIn(b, paris, s)$

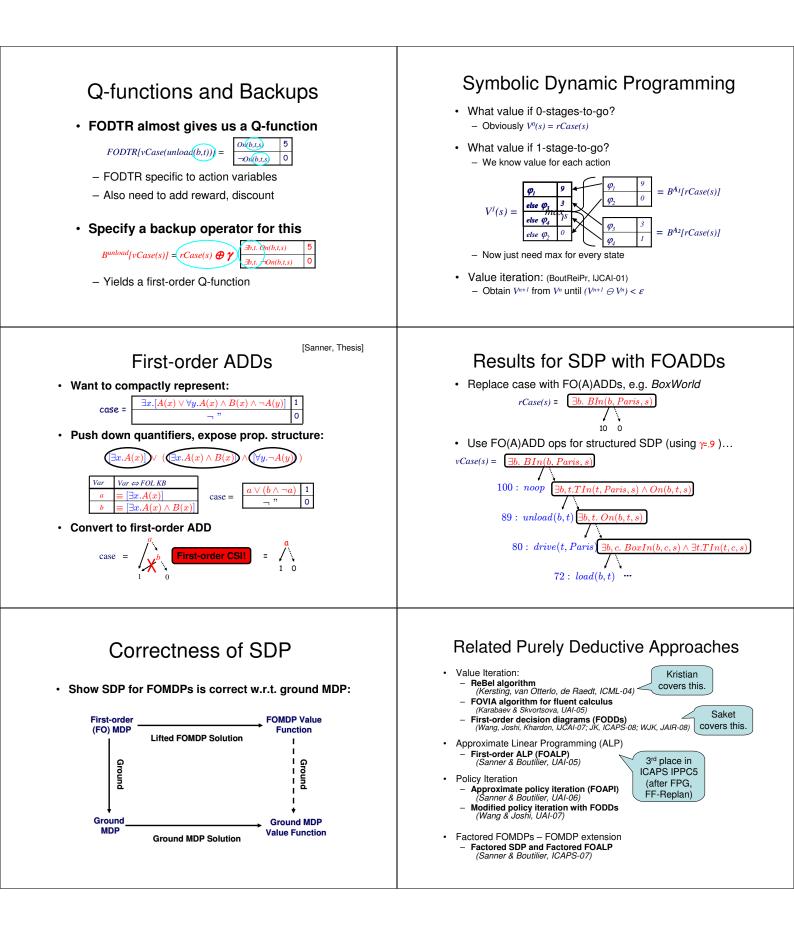
Captures initial state?

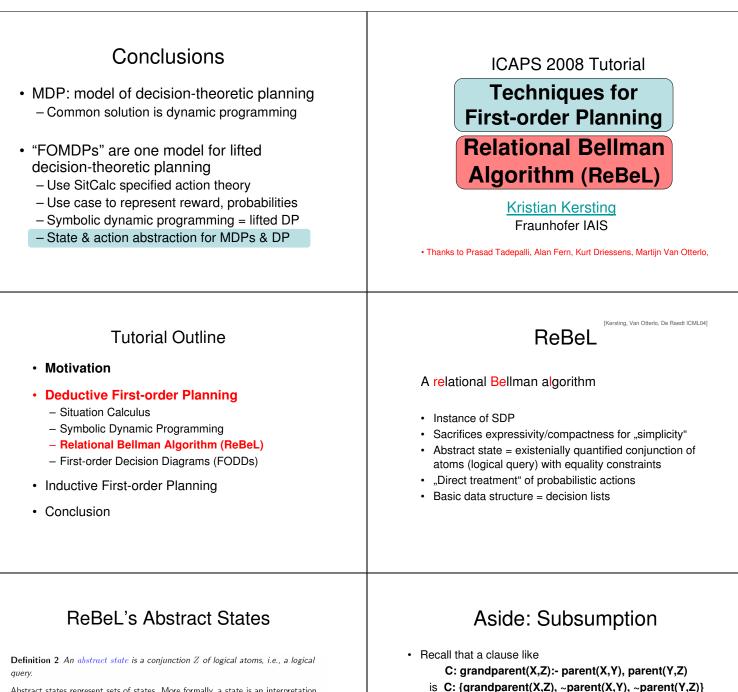
n-steps-to-go











Clause C1 subsume C2 iff there exists a

substitution 0 s.t. 0C1 is a subset of C2

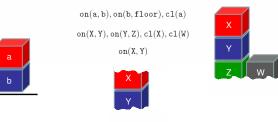
• Thus for the following pair of clauses, C1 subsumes C2:

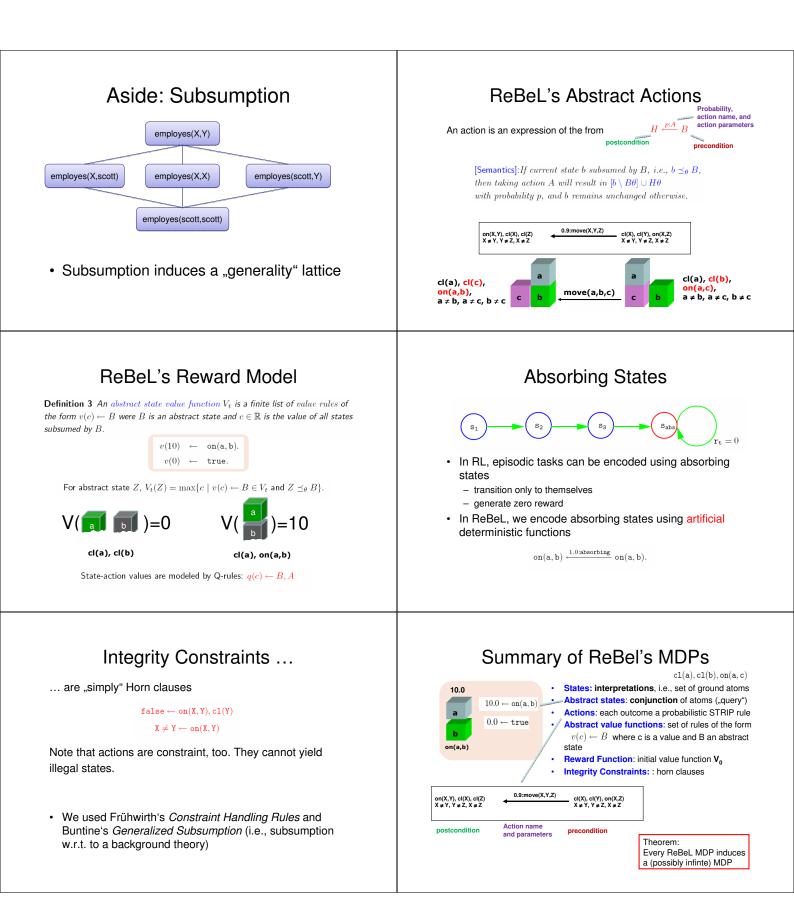
C2: mem(0,[1,0]):- nat(0), nat(1), mem(0,[0]).

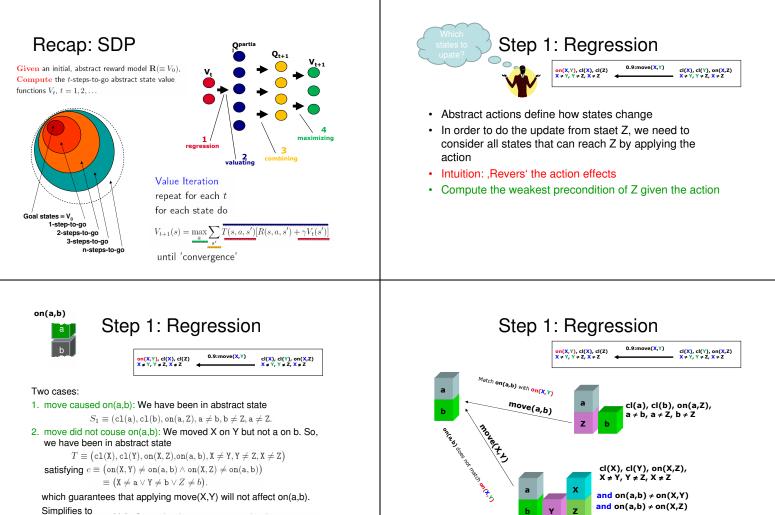
C1: mem(A,[B|C]):- mem(A,C).

• Note that C1 "looks" more general.

Abstract states represent sets of states. More formally, a state is an interpretation, i.e. a set of grounds facts.







 $S_2 \equiv (T \land X \neq a), S_3 \equiv (T \land Y \neq b) \text{ and } S_4 \equiv (T \land Z \neq b).$

Step 1: Regression

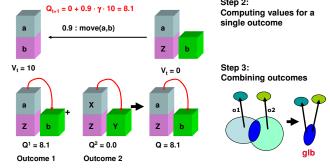
• on(a,b) is simple effect. In general, we have multiple effects, i.e., conjuctions of atoms.

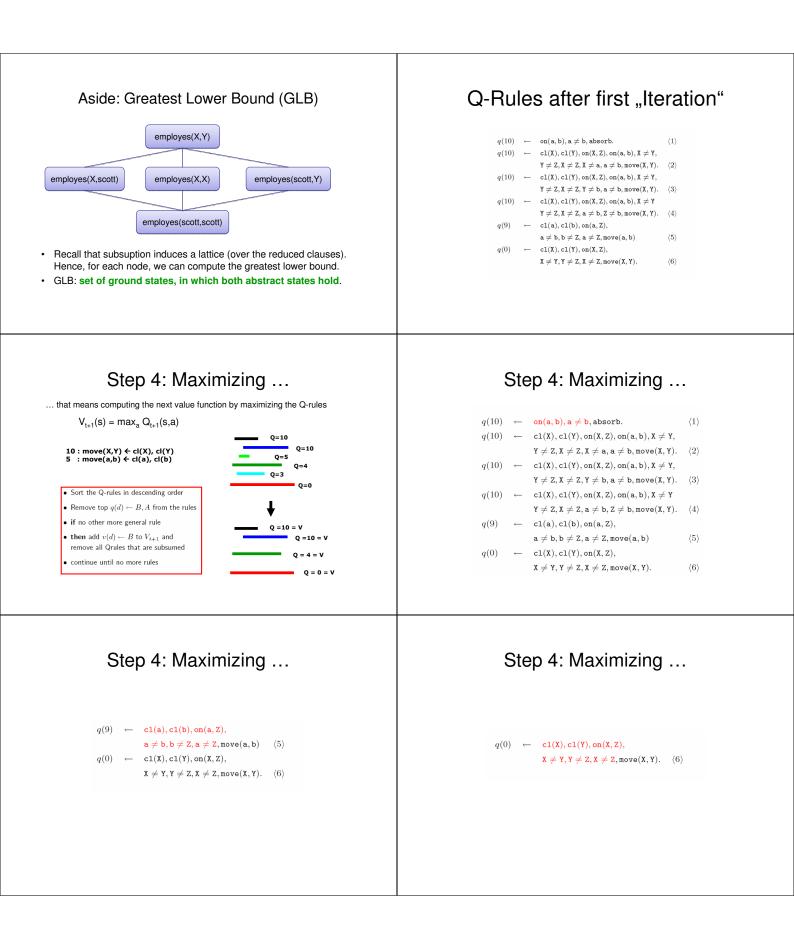
If $Post \stackrel{A}{\leftarrow} Pre$ and the 'next' state is Zwe take all possible overlapping subsets of Post and Zapply the resulting substitution θ on Post and Preadd 'unexplained' effects in Z to $Pre\theta$ calculate and add constraints

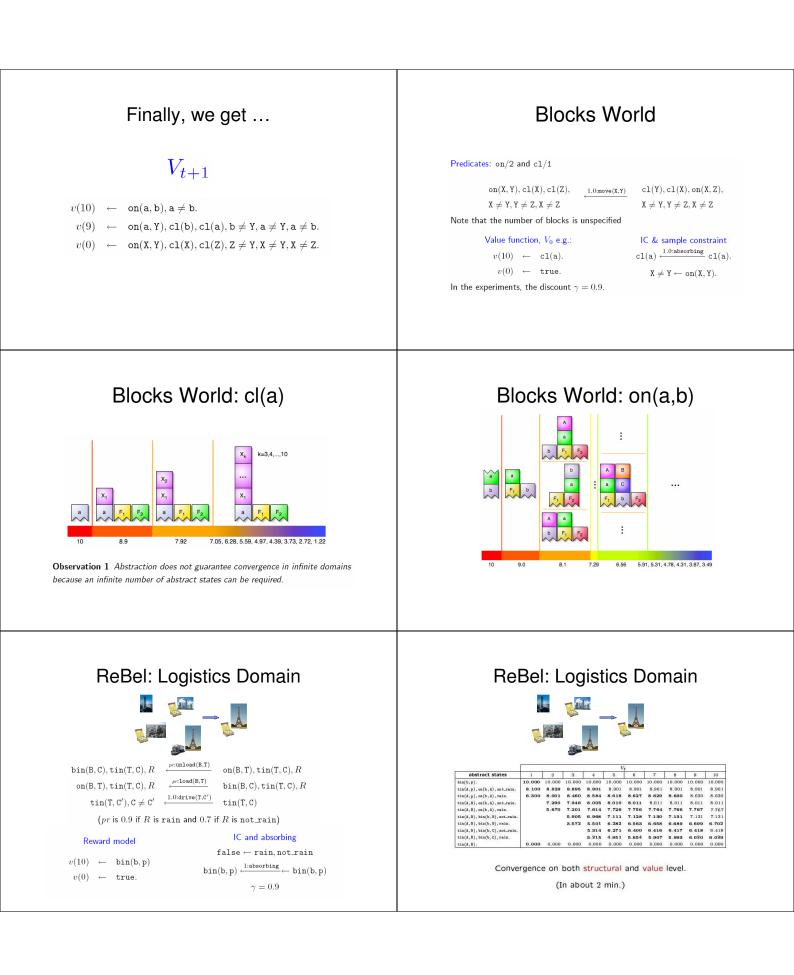
on(a, b), on(c, d) : on(a, b) was the effect and on(c, d) was already true on(a, b), on(c, d) : on(c, d) was the effect and on(a, b) was already true on(a, b), on(c, d) : on(X, Y) was the effect and on(a, b), on(c, d) were already true and constraints make sure that on(X, Y) is not on(a, b) nor on(c, d).

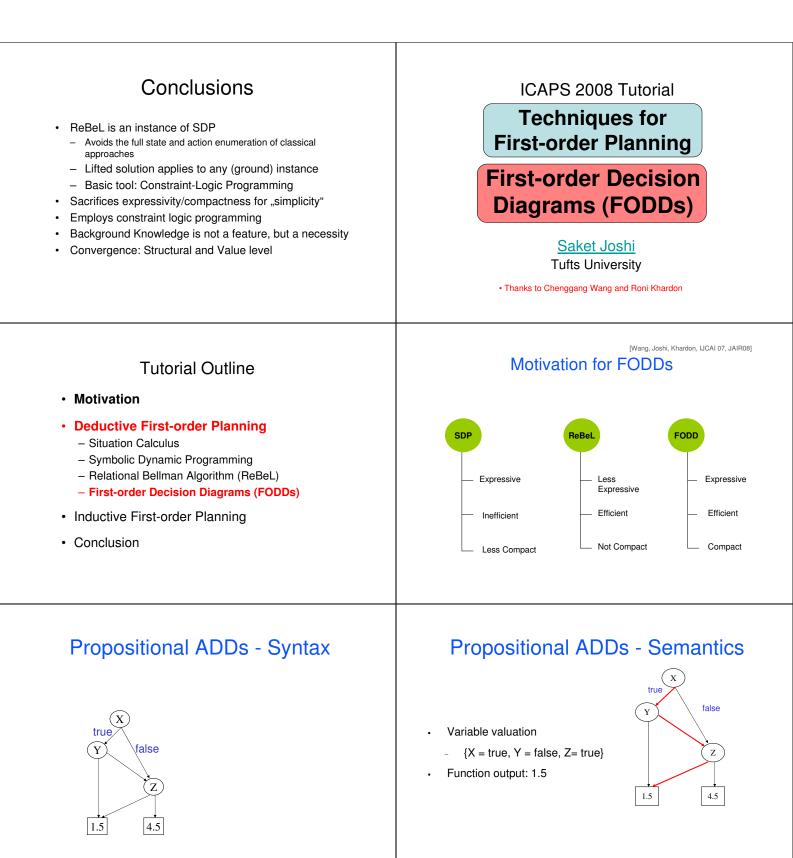
Steps 2&3: Valuation & Combination ...

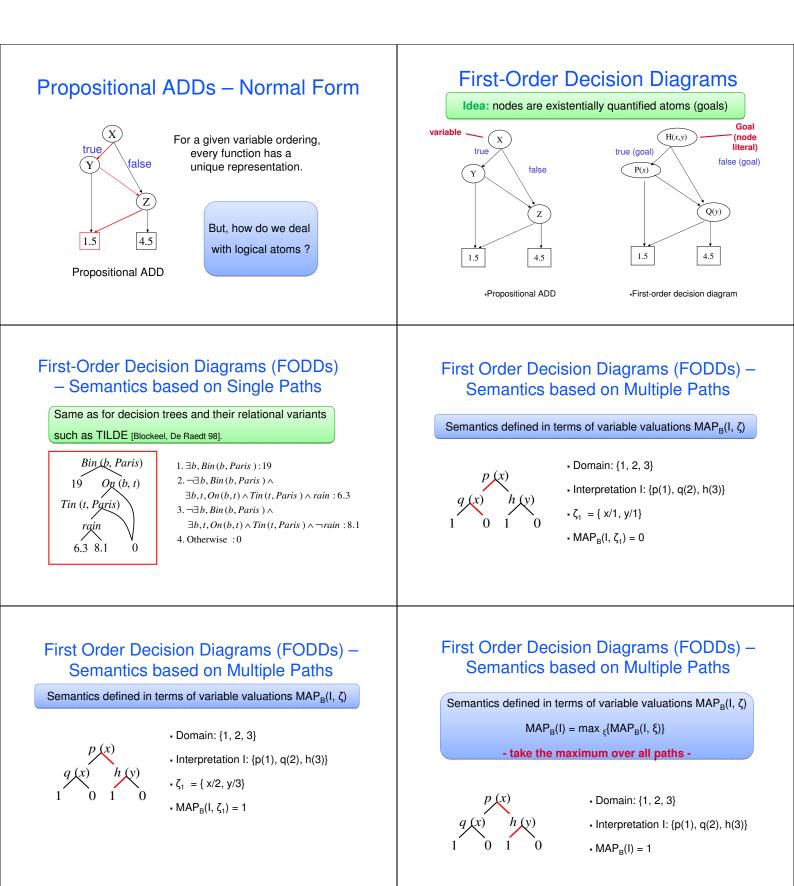
... that means computing the Q rules From regression, for each state S' in V_t we obtain (S, A)-pairs such that doing A in S results in S'. Step 2:

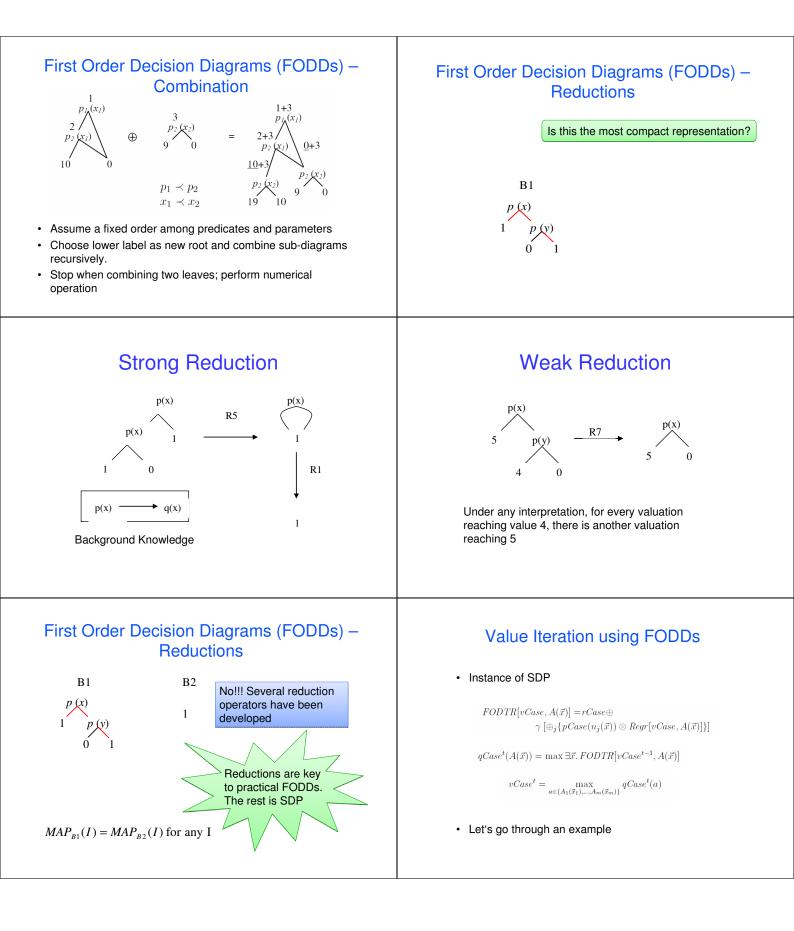


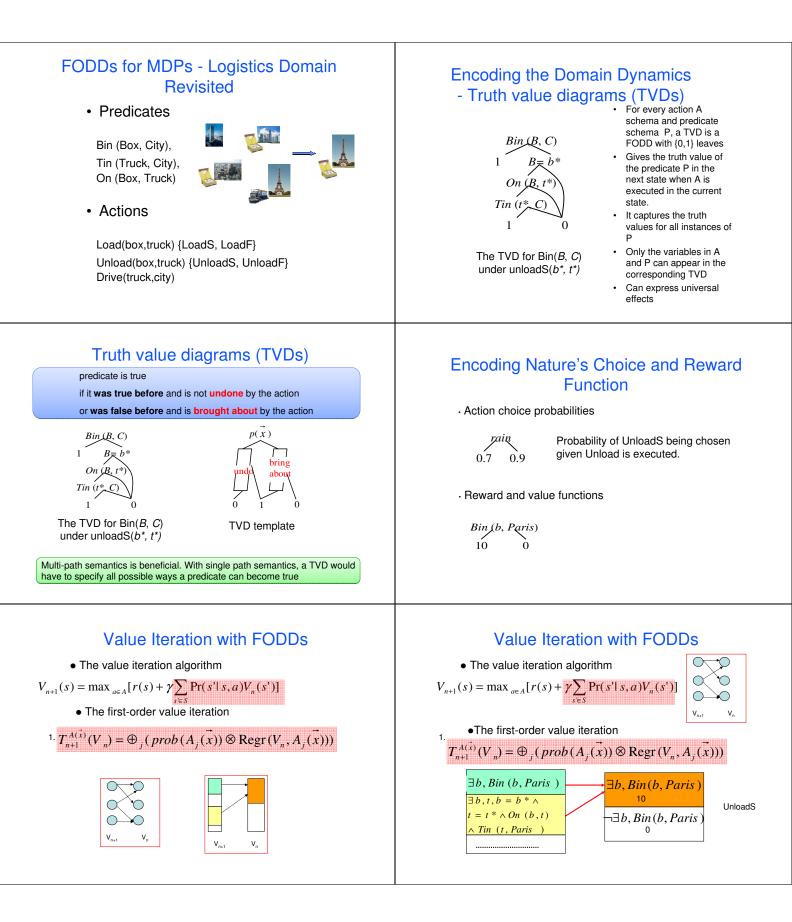


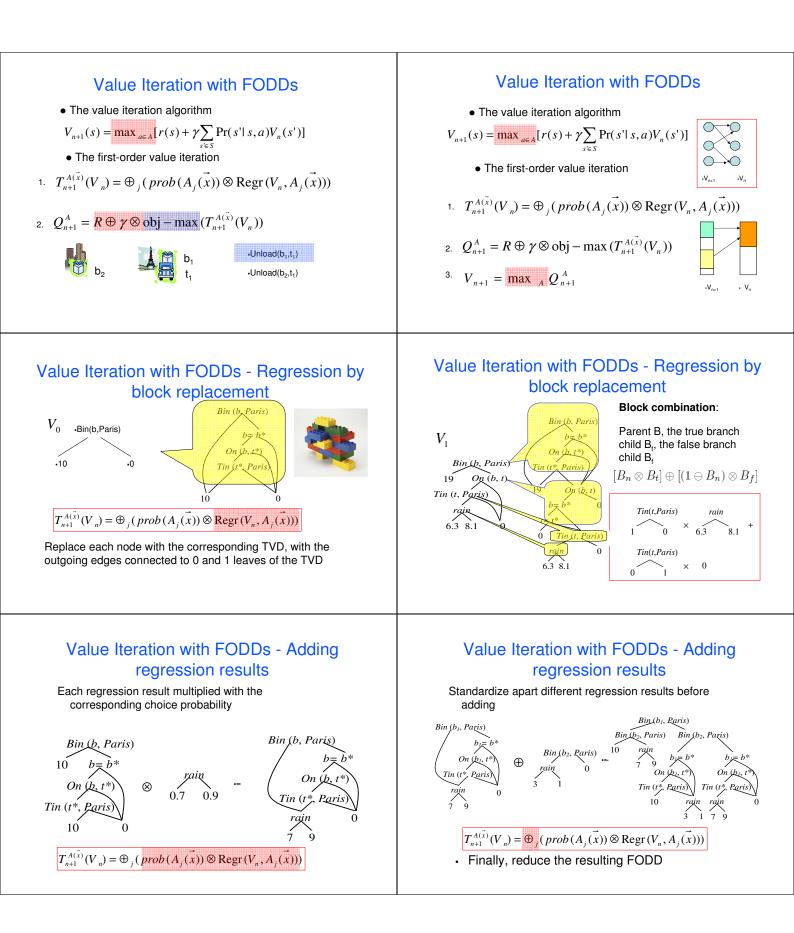


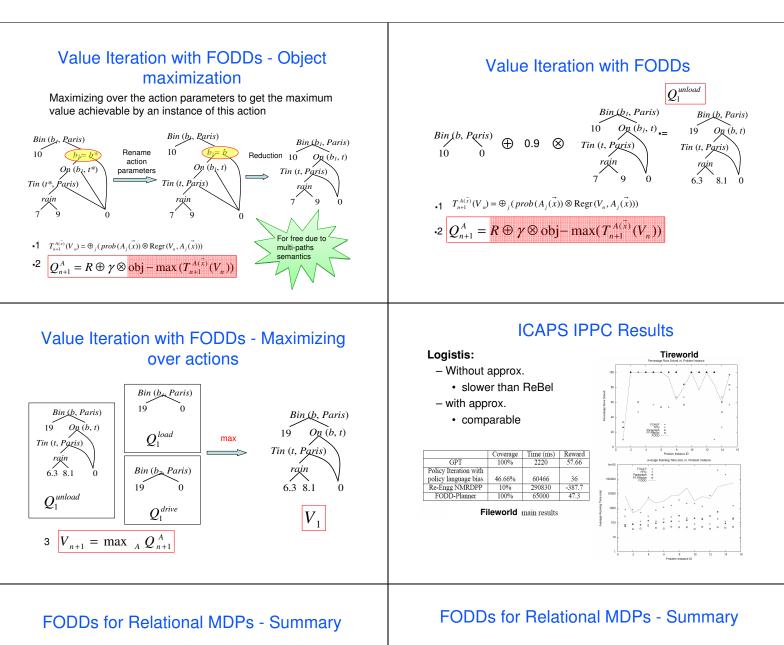






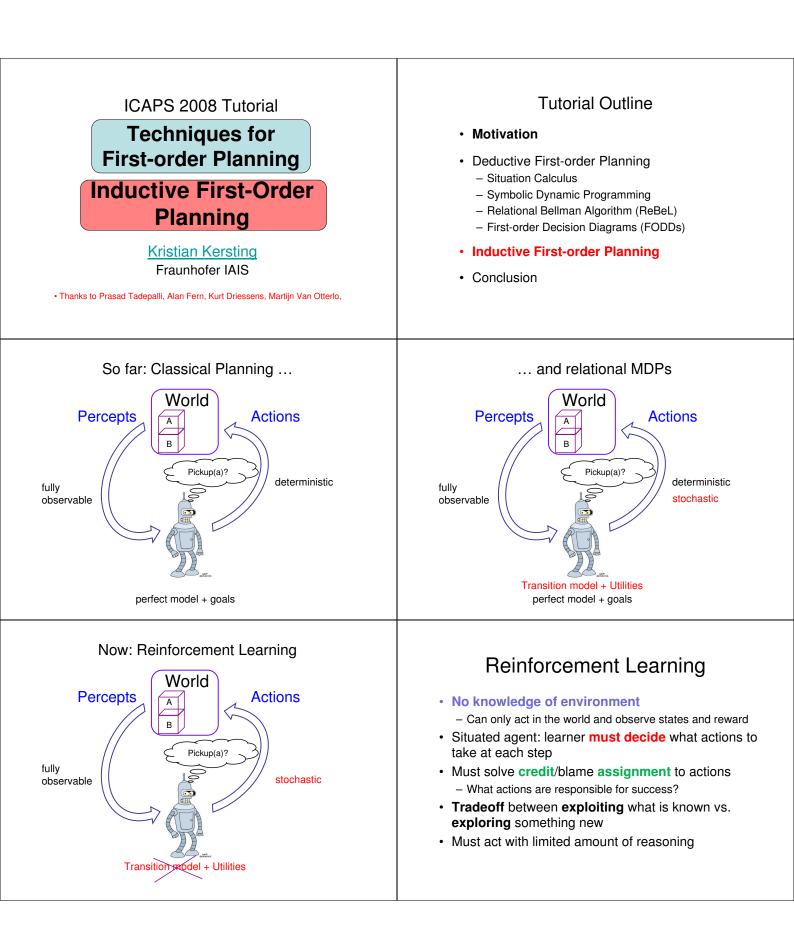


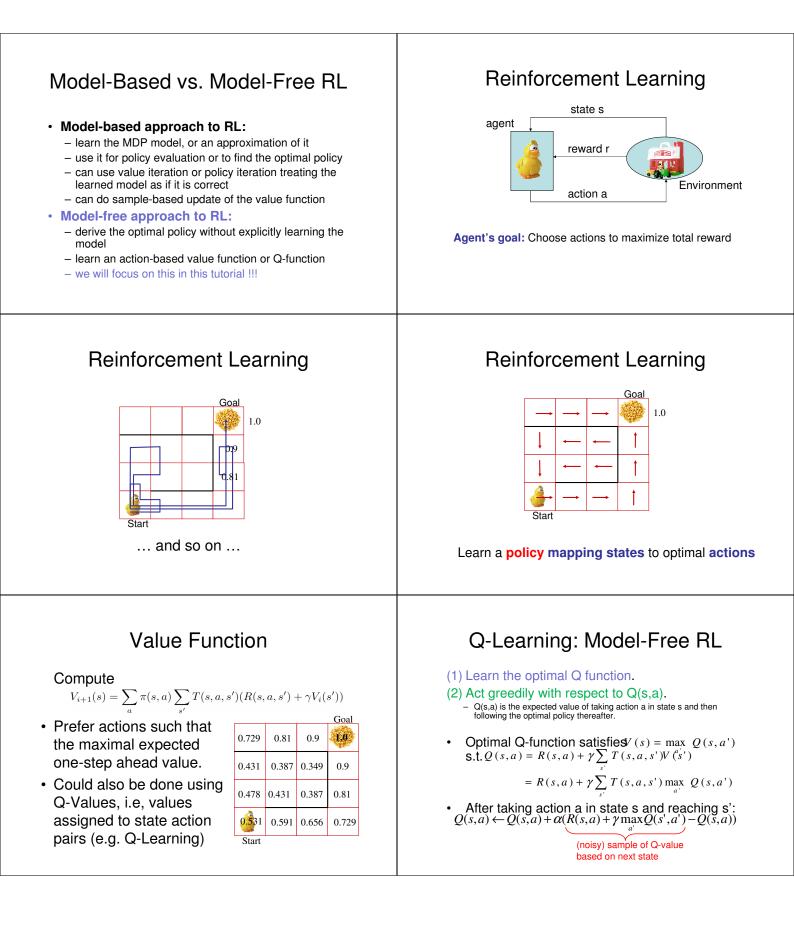


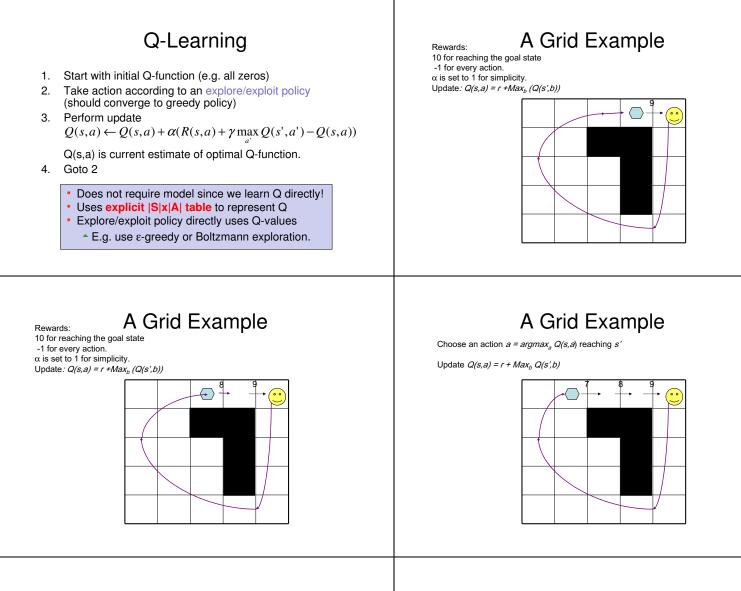


- FODDs compactly represent functions such as truth values, Q-values etc. over logical spaces
- Complete set of operators to reduce, multiply, add, etc. FODDs
 - direct implementation of SDP

- Approximation a la SPUDD possible: merge ...
 - substructures with similar values
 - Leaves, which are within a certain distance,
 -
- Policy iteration approach exists
 - Does not implement the same algorithm as original PI; instead it incorporates an element of policy improvement
 - Theorem: the sequence of value functions obtained from relational modified policy iteration converges monotonically to the optimal value function.
- Initial approach on partially observed, relational MDPs



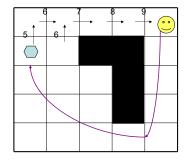




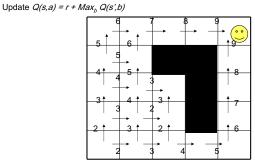
A Grid Example

Choose an action $a = argmax_a Q(s,a)$ reaching s'

Update $Q(s,a) = r + Max_b Q(s',b)$

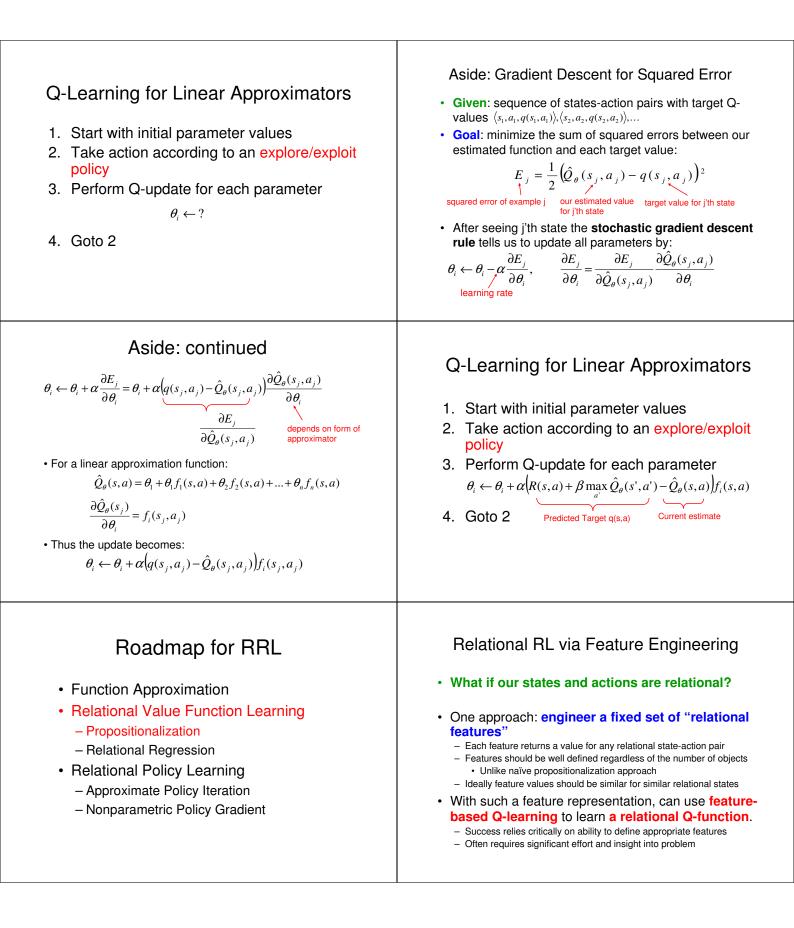


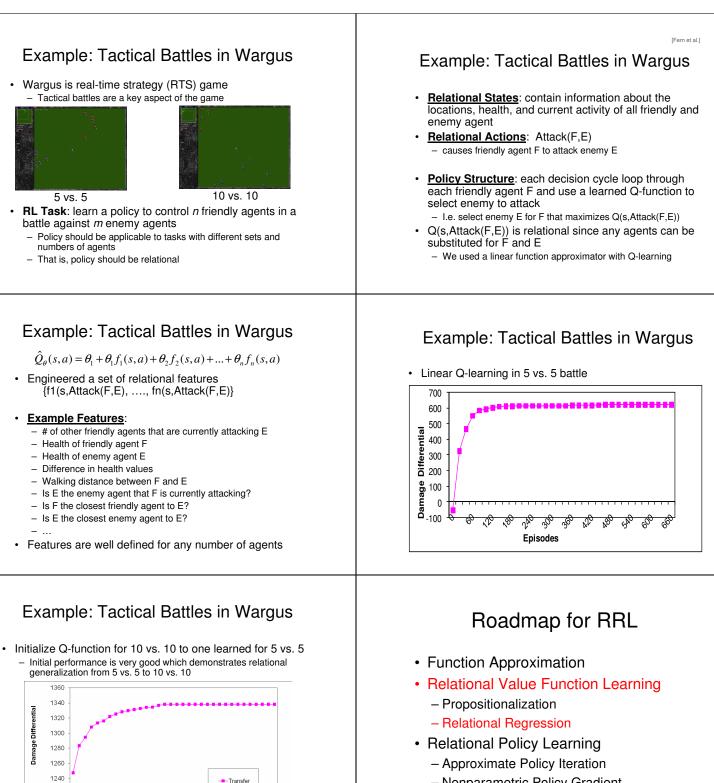
Choose an action $a = argmax_a Q(s, a)$ reaching s^2



The values converge to the optimal Q-values under GLIE policy

 Large Relational State Spaces When a problem has a large state space we can not longer represent the V or Q functions as explicit tables Generally the case for RMDPs with a non- trivial numbers of objects Even if we had enough memory Never enough training data! Learning takes too long What to do??
 Roadmap for RRL Function Approximation Relational Value Function Learning Propositionalization Relational Regression Relational Policy Learning Approximate Policy Iteration Nonparametric Policy Gradient
Feature Based Function Approx. • Define a set of n state-action features $f1(s,a),, fn(s,a)$ • The features are used as our representation of state-action pairs • State-action pairs with similar features will be considered similar • In RRL s and a are relational states and actions • Example Representation : linear approximator $\hat{Q}_{\theta}(s,a) = \theta_0 + \theta_1 f_1(s,a) + \theta_2 f_2(s,a) + + \theta_n f_n(s,a)$ • More generally one can use any form of function approximator in terms of these features • Regression trees, Kernel regression, Neural networks, etc.



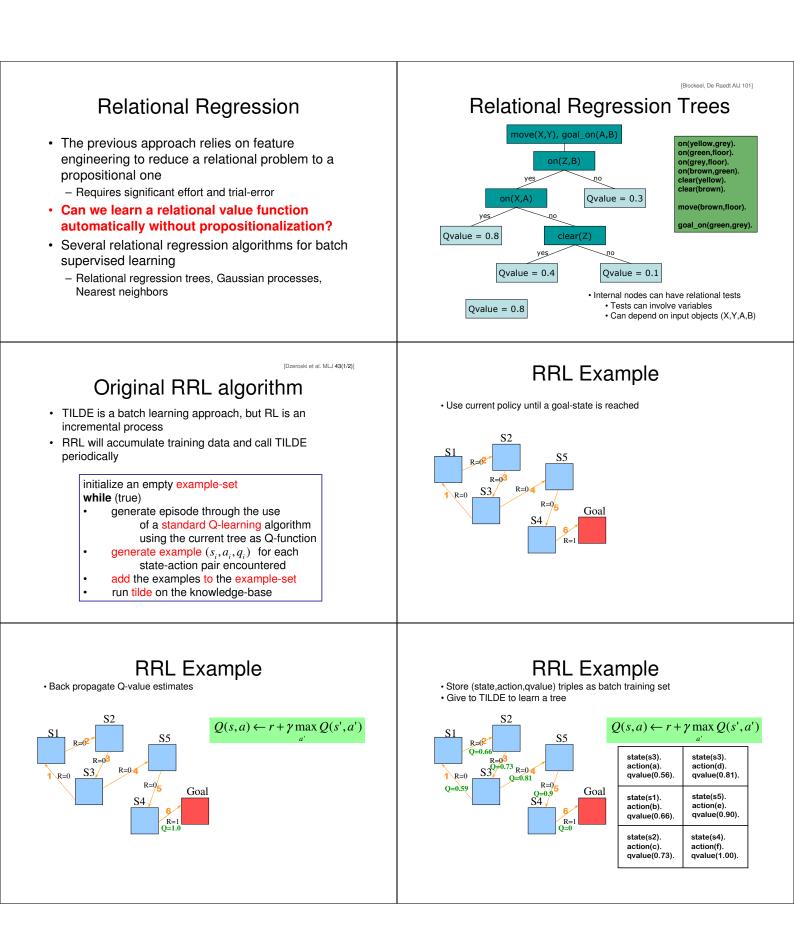


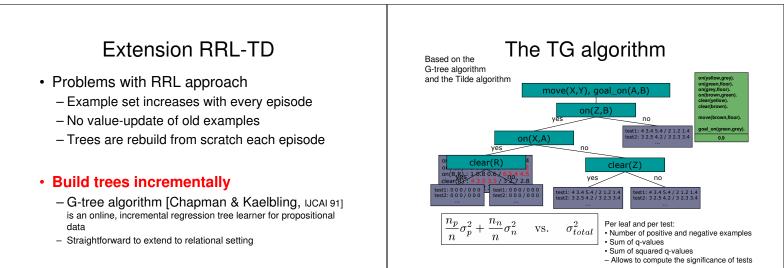
Transfer

1220 1200 0 60

2º 18º 24º 30º

- Nonparametric Policy Gradient





RRL-TG algorithm

[Driessens et al. ECML01]

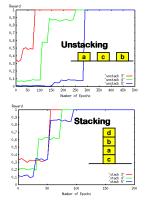
- · No need to accumulate examples generated during RRL
- · Simply update tree incrementally

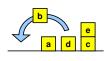
initialize tree to a single root node **while** (true) generate episode through the use of a standard Q-learning algorithm using the current tree as Q-function generate example (s_i, a_i, q_i) for each state-action pair encountered update tree using the TG-algorithm and the generated examples

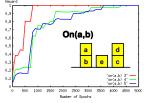
Timings

		3 blocks	4 blocks	5 blocks
Batch RRL	Stack (30 epochs)	6.16 min	62.4 min	306 min
	Unstack (30 epochs)	8.75 min	Not Stated	Not Stated
	On(a,b) (30 epochs)	20 min	Not Stated	Not Stated
RRL-TG	Stack (200 epochs)	19.2 sec	26.5 sec	39.3 sec
	Unstack (500 epochs)	1.10 min	1.92 min	2.75 min
	On(a,b) (5000 epochs)	25.0 min	57 min	102 min

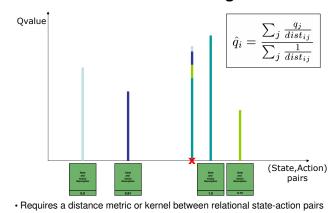
Experiments. Blocks World

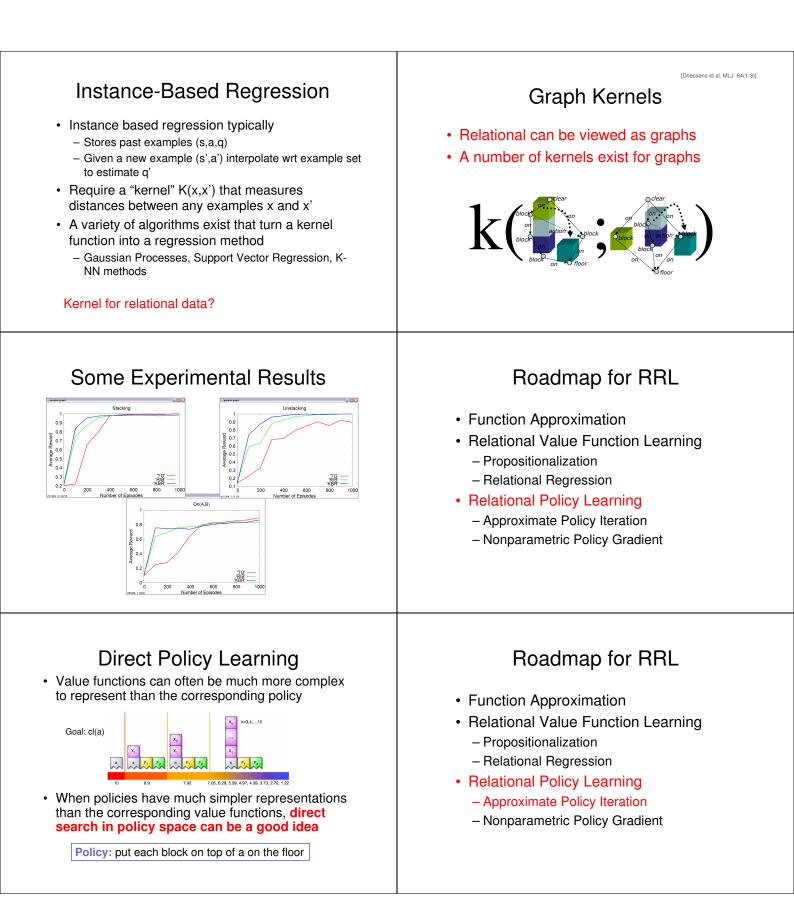


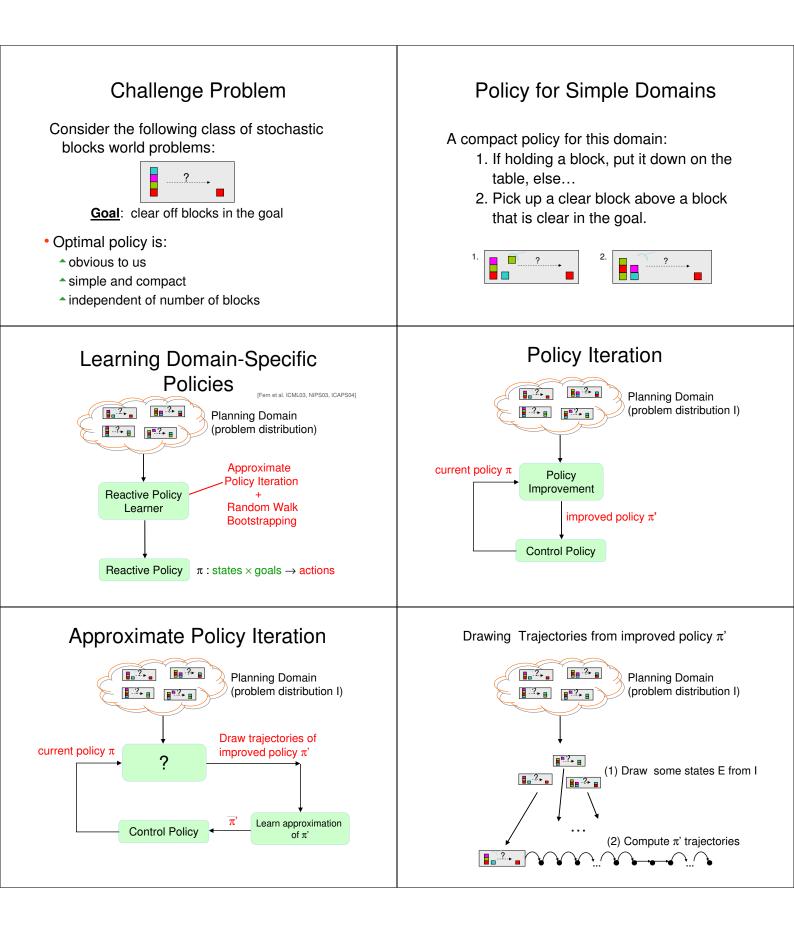


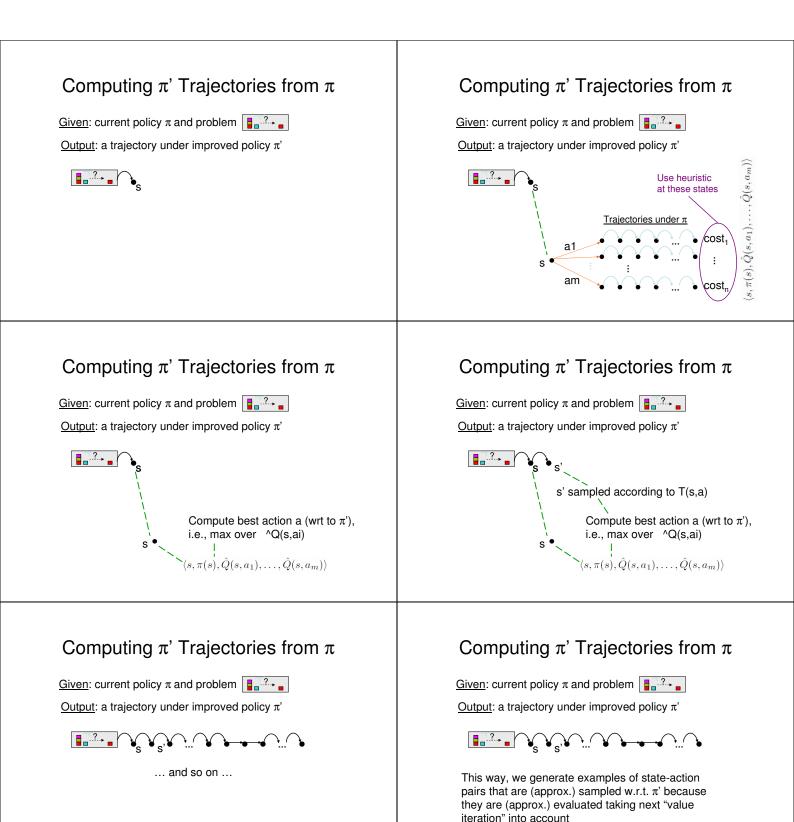


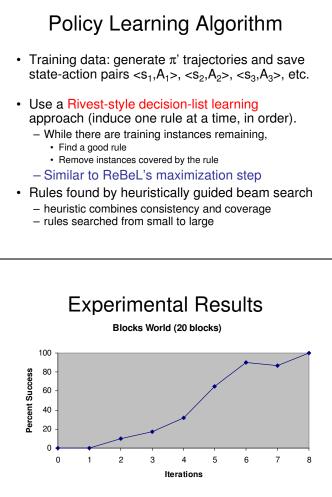
Instance Based Regression











Roadmap for RRL

- Function Approximation
- Relational Value Function Learning
 - Propositionalization
 - Relational Regression
- Relational Policy Learning
 - Approximate Policy Iteration
 - Nonparametric Policy Gradient

Experiments

- Evaluate on the seven domains from AIPS-2000 + TL-PLAN planning competition.
 - ▲ 5 domains : can represent good policies
 - 2 domains : can not represent good policies
- Compared against state-of-the-art planner FF
 FF's heuristic is very good for most of these domains.
- API equal or better FF's performance when we can represent policies.

Domains with Good Policies

Success Percentage

	Blocks	Elevator	Schedule	Briefcase	Gripper
API	100	100	100	100	100
FF-Plan	28	100	100	0	100

Typically our solution lengths are comparable to FF's.

Policy Gradients with Function Approximation (Sutton et al.)

- Parameterized policy: $\pi(s, a, \theta)$
- Gradient search w.r.t. world-value

$$\frac{\partial \rho(\theta)}{\partial \theta} = \frac{\partial}{\partial \theta} \sum_{s,a} d^{\pi}(s) \pi(s,a,\theta) Q^{\pi}(s,a)$$
$$= \sum_{s,a} d^{\pi}(s) Q^{\pi}(s,a) \frac{\partial \pi(s,a,\theta)}{\partial \theta}$$

