
18th International Conference on Automated Planning and Scheduling
September 14-18. 2008 Sydney, Australia

ICAPS-08 Tutorial on

First-Order Planning Techniques

Organizers

Scott Sanner, NICTA (Australia)
Kristian Kersting, Fraunhofer IAIS (Germany)

Techniques for
First-order Planning

Scott Sanner
NICTA

Motivation

Kristian Kersting
Fraunhofer IAIS

ICAPS 2008 Tutorial

with an invited presentation by Saket Joshi, Tufts University

Tutorial Outline

• Motivation

• Deductive First-order Planning

– Situation Calculus

– Symbolic Dynamic Programming

– Relational Bellman Algorithm (ReBeL)

– First-order Decision Diagrams (FODDs)

• Inductive First-order Planning

• Conclusion

Planning Languages

• Common languages:
– STRIPS
– PDDL

• more expressive than STRIPS
• for example, universal and conditional effects:

(:action put-all-blue-blocks-on-table
:parameters ()
:precondition ()
:effect (forall (?b)

(when (Blue ?b)
(not (OnTable ?b)))))

– General Game Playing (GGP)
• one or more agents

Benefits of Relational Languages

• STRIPS, PDDL, GGP are relational languages…

– Refer to relational fluents:

• e.g., BIn(?b,?c), OnTable(?b)

• specify relations between objects

• change over time

– Use first-order logic to specify…

• action preconditions

• action effects

• goals / rewards

– e.g., (forall (?b ?c) ((Destination ?b ?c) ⇒ (Bin ?b ?c)))

– Are domain-independent and often compact!

• Relational planning problem:

(:action load-box-on-truck-in-city
:parameters (?b - box ?t - truck ?c – city)
:precondition (and (BIn ?b ?c) (TIn ?t ?c))
:effect (and (On ?b ?t) (not (BIn ?b ?c))))

London
Paris

Rome
Berlin MoscowBoxWorld:

How to Solve?

• Or solve lifted specification for all domains at once?

• Solve ground problem for each domain instance?

- 3 trucks: 2 planes: 3 boxes:

Full Specification: BoxWorld
• Relational Fluents: BoxIn(Box ,City),TruckIn(Truck ,City),BoxOn(Box ,Truck)

• Goal: [∃Box : b.BoxIn(b, paris)]

• Actions:

– load(Box : b,Truck : t):

∗ Effects:

· when [∃City : c.BoxIn(b, c)∧TruckIn(t, c)] then [BoxOn(b, t)]

· ∀City : c.when [BoxIn(b, c)∧TruckIn(t, c)] then [¬BoxIn(b, c)]}

– unload(Box : b,Truck : t):

∗ Effects:

· ∀City : c.when [BoxOn(b, t)∧TruckIn(t, c)] then [BoxIn(b, c)]

· when [∃City : c.BoxOn(b, t)∧TruckIn(t, c)] then [¬BoxOn(b, t)]

– drive(Truck : t,City : c):

∗ Effects:

· when [∃City : c1.TruckIn(t, c1)] then [TruckIn(t, c)]

· ∀City : c1.when [TruckIn(t, c1)] then [¬TruckIn(t, c1)]

Solving Ground BoxWorld

• Domain Object Instantiation:

– Box = {box 1, box 2, box 3},Truck = {truck1, truck2},City = {paris, berlin, rome}

• Ground Fluents(i.e., binary statevariables):

– BoxIn: {BoxIn(box 1, paris),BoxIn(box 2, paris),BoxIn(box 3, paris),BoxIn(box 1, berlin),BoxIn(box2, berlin),
BoxIn(box 3, berlin),BoxIn(box 1, rome),BoxIn(box 2, rome),BoxIn(box 3, rome)}

– TruckIn: {TruckIn(truck1, paris),TruckIn(truck1, berlin),TruckIn(truck1, rome),TruckIn(truck2, paris),
TruckIn(truck2, berlin),TruckIn(truck2, rome)}

– BoxOn: {BoxOn(box 1, truck1),BoxOn(box 2, truck1),BoxOn(box3, truck1),BoxOn(box1, truck2),
BoxOn(box 2, truck2),BoxOn(box 3, truck2)}

• Ground Actions:

– load : {load(box 1, truck1), load(box 2, truck1), load(box3, truck1) load(box1, truck2),
load(box 2, truck2)}, load(box 3, truck2)}

– unload : {unload(box 1, truck1), unload(box2, truck1), unload(box3, truck1),
unload(box1, truck2), unload(box2, truck2)}, unload(box 3, truck2)}

– drive: {drive(truck 1, paris), drive(truck1, berlin), drive(truck1, rome)
drive(truck2, paris), drive(truck2, berlin), drive(truck2, rome)

• Goal: [BoxIn(box 1, paris) ∨ BoxIn(box2, paris) ∨ BoxIn(box 3, paris)]

• Apply planner to BoxWorld grounded w.r.t. domain, e.g.,

Exponential #state-vars in arity

Exponential #actions in arity

Exponential in

#nested quantifiers

#states exponential

in #state-vars!

A First-order Solution to BoxWorld

• Derive solution deductively at lifted PDDL level:

• Great, but how do I obtain this solution?

• if (∃b.BoxIn(b, paris))
then do noop

• else if (∃b∗, t∗.TruckIn(t∗, paris) ∧ BoxOn(b∗, t∗))
then do unload(b∗, t∗)

• else if (∃b, c, t∗.BoxOn(b, t∗) ∧ TruckIn(t, c)
then do drive(t∗, paris)

• else if (∃b∗, c, t∗.BoxIn(b∗, c) ∧ TruckIn(t∗, c))
then do load(b∗, t∗)

• else if (∃b, c∗1, t
∗, c2.BoxIn(b, c

∗

1) ∧ TruckIn(t
∗, c2))

then do drive(t∗, c∗1)

• elsedo noop

Optimal for any

domain instantiation!

Tutorial Overview

• Foundational theory for exploiting first-order

structure in planning

– deterministic and probabilistic

– representations and implementation

• The first part covers a deductive approach

– plan solely based on model

– no simulations or sampled data

• requires grounding

• The second part reviews inductive approaches

Techniques for
First-order Planning

Scott Sanner
NICTA

Deterministic Planning in
the Situation Calculus

ICAPS 2008 Tutorial

Tutorial Outline

• Motivation

• Deductive First-order Planning

– Situation Calculus

– Symbolic Dynamic Programming

– Relational Bellman Algorithm (ReBeL)

– First-order Decision Diagrams (FODDs)

• Inductive First-order Planning

• Conclusion

Situation Calculus: Ingredients

• Actions
– first-order terms with action parameters
– e.g., load(b,t), unload(b,t), drive(t,c)

• Situations
– term that encodes action history
– e.g., s, s0, do(load(b,t),s), do(load(b,t),drive(t,c),s)

• Fluents
– relation whose truth value varies b/w situations
– e.g., BoxOn(b,t,s), TruckIn(t,c,s), BoxIn(t,c,s)

Situation Calculus: PDDL to Effects

• load(Box : b,Truck : t):

– Effects:

∗ when [∃City : c.BoxIn(b, c) ∧ TruckIn(t, c)] then [BoxOn(b, t)]

∗ ∀City : c.when [BoxIn(b, c) ∧ TruckIn(t, c)] then [¬BoxIn(b, c)]}

• unload(Box : b,Truck : t):

– Effects:

∗ ∀City : c.when [BoxOn(b, t) ∧ TruckIn(t, c)] then [BoxIn(b, c)]

∗ when [∃City : c.BoxOn(b, t) ∧ TruckIn(t, c)] then [¬BoxOn(b, t)]

• drive(Truck : t,City : c):

– Effects:

∗ when [∃City : c1.TruckIn(t, c1)] then [TruckIn(t, c)]

∗ ∀City : c1.when [TruckIn(t, c1)] then [¬TruckIn(t, c1)]

• Recall BoxWorld PDDL specification…

Situation Calculus: PDDL to Effects

• load(Box : b,Truck : t):

– Effects:

∗ [∃c. a = load(b, t)∧BoxIn(b, c, s)∧TruckIn(t, c, s)] ⊃ BoxOn(b, t, do(a, s))

∗ [∃t. a = load(b, t)∧BoxIn(b, c, s)∧TruckIn(t, c, s)] ⊃ ¬BoxIn(b, c, do(a, s))

• unload(Box : b,Truck : t):

– Effects:

∗ [∃t. a = unload(b, t)∧BoxOn(b, t, s)∧TruckIn(t, c, s)] ⊃ BoxIn(b, c, do(a, s))

∗ [∃c. a = unload(b, t)∧BoxOn(b, t, s)∧TruckIn(t, c, s)] ⊃ ¬BoxOn(b, t, do(a, s))

• drive(Truck : t,City : c):

– Effects:

∗ [∃c1. a = drive(t, c) ∧ TruckIn(t, c1, s)] ⊃ TruckIn(t, c, do(a, s))

∗ [∃c. a = drive(t, c) ∧ TruckIn(t, c1, s)] ⊃ ¬TruckIn(t, c1, do(a, s))

• Translate to positive and negative effect axioms

Situation Calculus: PDDL to Effects

• Now, merge into positive effect axioms

and negative effect axioms

• Use rule to combine multiple effects

γ+
F
(x, a, s) ⊃ F (x, do(a, s))

γ−
F
(x, a, s) ⊃ ¬F (x, do(a, s))

[(C1 ⊃ F) ∧ (C2 ⊃ F)] ≡ [(C1 ∨ C2) ⊃ F]

Frame Problem

• Now we have positive and negative effects

so we have compactly specified what changes.

• How to compactly specify what does not change?
– Infamous Frame Problem

– Intuition:
• “what does not change, remains same”

• this is Reiter’s Default Solution

• but we have to logically formalize it…

γ−
BoxIn

(x, a, s) ⊃ ¬BoxIn(x, do(a, s))

γ−
TruckIn

(x, a, s) ⊃ ¬TruckIn(x, do(a, s))

γ−
BoxOn

(x, a, s) ⊃ ¬BoxOn(x, do(a, s))

γ+
BoxIn

(x, a, s) ⊃ BoxIn(x, do(a, s))

γ+
TruckIn

(x, a, s) ⊃ TIn(x, do(a, s))

γ+
BoxOn

(x, a, s) ⊃ BoxOn(x, do(a, s))

Unique names

for actions /

arguments.

Explanation

closure axioms

Effect

axioms

Unique names

axioms for terms

SSAs

Successor State Axioms (SSAs)

• Default solution to frame problem given as SSAs:

γ+
F
(x, a, s) ⊃ F (x, do(a, s))

γ−
F
(x, a, s) ⊃ ¬F (x, do(a, s))

F (x, do(a, s)) ≡ γ+
F
(x, a, s) ∨ F (x, s)

∧ ¬γ−
F
(x, a, s)

Logical Machinery

SSAs
• Shorthand:

• Reality check:

F (x, do(a, s)) ≡ ΦF (x, a, s)

≡ γ+
F
(x, a, s) ∨ F (x, s) ∧ ¬γ−

F
(x, a, s)

What changes and

does not change!

BoxOn(b, t, do(a, s)) ≡ ΦBoxOn (b, t, a, s)

≡ [∃c. a = load(b, t) ∧ BoxIn(b, c, s) ∧ TruckIn(t, c, s)]

∨ BoxOn(b, t, s) ∧ ¬ [∃c. a = unload(b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, c, s)]

BoxIn(b, c, do(a, s)) ≡ ΦBoxIn (b, c, a, s)

≡ [∃t. a = unload(b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, c, s)]

∨ BoxIn(b, c, s) ∧ ¬ [∃t. a = load(b, t) ∧ BoxIn(b, c, s) ∧ TruckIn(t, c, s)]

TruckIn(t, c, do(a, s)) ≡ ΦTruckIn(t, c, a, s)

≡ [∃c1. a = drive(t, c) ∧ TruckIn(t, c1, s)]

∨ TruckIn(t, c, s) ∧ ¬ [∃c1. a = drive(t, c) ∧TruckIn(t, c1, s)]

Regression

• Why have we defined SSAs?

• Regression:

– If ϕ held after action a
then regression is the ϕ’ that held before action a

• Exploit following properties:
• Regr(¬ψ) = ¬Regr(ψ)

• Regr(ψ1 ∧ ψ2) = Regr(ψ1) ∧Regr(ψ2)

• Regr((∃x)ψ) = (∃x)Regr(ψ)

• Regr(F (x, do(a, s))) = ΦF (x, a, s)

Regression Example

• Given

• Regress through unload(b*,t*)

∃b.BoxIn(b, paris, do(unload(b∗, t∗), s))

Regr(∃b.BoxIn(b, paris, do(unload(b∗, t∗), s)))

=∃b.ΦBoxIn(b, paris, unload(b
∗, t∗), s)

=∃b. [∃t. unload(b∗, t∗) = unload(b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, paris, s)]

∨ BoxIn(b, paris, s)

∧ ¬ [∃t. unload(b∗, t∗) = load(b, t) ∧ BoxIn(b, paris, s) ∧ TruckIn(t, paris, s)]

= [∃b, t. b = b∗ ∧ t = t∗ ∧ BoxOn(b, t, s) ∧ TruckIn(t, paris, s)]

∨ ∃b.BoxIn(b, paris, s)

= [(∃b.b = b∗) ∧ (∃t.t = t∗) ∧ BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris, s)]

∨ ∃b.BoxIn(b, paris, s)

= [BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris, s)] ∨ ∃b.BoxIn(b, paris, s)

note free vars b*, t*; why?

make non-empty domain assumption

First-order state & action abstraction!

Don’t have to enumerate all states, b*, t*!

Regression Example

• But what action instantiation of unload(b*,t*) leads to:

• Just have to existentially quantify b*, t*
– Can obtain instances via query extraction w.r.t. state KB

∃b.BoxIn(b, paris, do(unload(b∗, t∗), s))

∃b∗, t∗. Regr(∃b.BoxIn(b, paris, do(unload(b∗, t∗), s)))

= ∃b∗, t∗. [BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris, s)]

∨ ∃b.BoxIn(b, paris, s)

= [∃b∗, t∗. BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris, s)]

∨ ∃b.BoxIn(b, paris, s)

Recap

• We translated PDDL to SitCalc theory

– converted PDDL effects to SitCalc effect axioms

– derived SSAs from effect axioms

• using default solution to Frame Problem

• Introduced regression operator

– extracted action instantiation to achieve goal

• Let the planning begin…

Regression Planning

• Define abstract
goal state, e.g.,

• Check if
regression
through action
sequence holds
in initial state

1-step-to-go

2-steps-to-go

3-steps-to-go

n-steps-to-go

∃b.BoxIn(b, paris, s)

First-order Goal-regression

• We can now do goal regression planning!

– Provide initial state and sequence of actions

– Use regression, ∃ to tell whether goal will hold

unload(b ∗, t ∗) ∃b.BoxIn(b, paris, s)

∃b∗, t∗.BoxOn(b, t, s) ∧ TruckIn(t, paris, s)

∨ ∃b.BoxIn(b, paris, s)

∃b.BoxIn(b, paris, s)

drive
(t
∗ , c

∗

1
, c
∗

2
)

…

…

…

…

Captures initial

state?

Captures initial

state?

Goal State:
Captures initial

state?

Progression and Forward-search?

• Can we do lifted forward-search planning?

– Progression not first-order definable! (Reiter, 01)

– Could progress ground state

• But this does not exploit first-order structure

?

unload(b ∗, t ∗)

∃b∗, t∗.BoxOn(b, t, s) ∧ TruckIn(t, paris, s)

∨ ∃b.BoxIn(b, paris, s)

dri
ve(

t
∗ , c

∗
1
, c
∗
2
)

?Captures goal

state?

Captures goal

state?

Initial state:
Captures goal state?

Golog: Restricted Plan Search

• AlGOl in LOGic

– Search the space of sequential action plans

– Regress actions to initial state to test reachability

– Restrict action space with program:

α primitive action

φ? condition test

(δ1, δ2) sequence

if φ then δ2 endIf conditional

while φ then δ endWhile loop

(δ1|δ2) nondeterministic choiceof action

π 	x [δ] nondeterministic choiceof arguments

δ∗ nondeterministic iteration

proc β(x) δ endProc procedurecall definition

β(t) procedurecall

Golog Example

• Golog Program:

• Diagram of Golog Planning:

(π b [¬OnTable(b, s)?, pickup(b), putOnTable(b)])∗,

∀b. OnTable(b, s)?

pickup(?b1);

putOnTable(?b1)

pickup(?b2);

putOnTable(?b2)

Initial State

Initial state need

not be fully known!

∃b. ¬OnTable(b, s)?

Initial State? Initial State?

Heavily restricted

action sequences!

Program exploits first-

order action abstraction!

For Further Reading

• Knowledge in Action:
In-depth coverage of SitCalc default solution, applications

(Reiter, 2001)

• Golog
(Levesque, Reiter, Lesperance, Lin,
Journal Logic Programming, 1997)

• Extensions
– ConGolog: concurrent Golog

(de Giacomo, Lesperance, Levesque, AIJ-00)

– DT-Golog: decision-theoretic, covered next
(Soutchanski, Boutilier, Reiter, Thrun, AAAI-20)

For MDPs,
covered next.

Conclusion

• Situation Calculus
– First-order specification of action theory

– Default solution addresses Frame Problem
• Effective approach to PDDL-expressive planning

• Supports Regression Planning
– Initial state need not be fully specified

– Can restrict action space with Golog program

– Exploits state & action abstraction
• Avoids enumerating all state & action instances!

Techniques for
First-order Planning

Scott Sanner
NICTA

FOMDPs and Symbolic
Dynamic Programmming

ICAPS 2008 Tutorial

Tutorial Outline

• Motivation

• Deductive First-order Planning

– Situation Calculus

– Symbolic Dynamic Programming

– Relational Bellman Algorithm (ReBeL)

– First-order Decision Diagrams (FODDs)

• Inductive First-order Planning

• Conclusion

MDPs <S,A,T,R,γ>

• S = {1,2}; A = {stay, change}
• Reward

– R(s=1,a=stay) = 2
– …

• Transitions
– T(s=1,a=stay,s’=1) = P(s’=1 | s=1, a=stay) = .9
– …

• Discount γ

s=1 s=2 a=stay a=stay (P=1.0)(P=1.0)

a=change a=change (P=1.0)(P=1.0)a=stay (P=0.9)a=stay (P=0.9)

a=change a=change (P=1.0)(P=1.0)

a=stay (P=0.1)a=stay (P=0.1)

R=10

R=2
R=0

How to act
in an MDP?

Define policy

π: S → A

What’s the best Policy?

• Immediate vs. long-term gain?

s=1

s=2

R=0

a=stay (P=.9)a=stay (P=.9)

R=2

a=changea=change
R=10

s=1

s=2

R=0

a=stay (P=.9)a=stay (P=.9)

R=2

a=changea=change
R=10

s=1

s=2

R=0

a=stay (P=.9)a=stay (P=.9)

R=2

a=changea=change
R=10

What’s the best Policy?

• Must define reward criterion to optimize!

– Discount factor γ important (γ=.9 vs. γ=.1)

s=1

s=2

R=0

a=stay (P=.9)a=stay (P=.9)

R=2

a=changea=change
R=10

s=1

s=2

R=0

a=stay (P=.9)a=stay (P=.9)

R=2

a=changea=change
R=10

s=1

s=2

R=0

a=stay (P=.9)a=stay (P=.9)

R=2

a=changea=change
R=10

MDP Policy, Value, & Solution

• Define value of a policy π:

• Tells how much value you expect to get

by following π starting from state s

• MDP Optimal Solution:

– Find optimal policy π* that maximizes value

– Fortunately:

Vπ(s) = Eπ

[
∞∑

t=0

γt · rt

∣∣∣s = s0

]

∃π∗. ∀s, π. Vπ∗(s) ≥ Vπ(s)

Value Iteration: from finite to ∞ decisions

• Given optimal t-1-stage-to-go value function

• How to act optimally with t decisions?

– Take action a then act so as to achieve Vt-1 thereafter

– What is expected value of best action a at decision stage t?

– At ∞ horizon, get same value (=V*)

• π* says act same at each decision stage for ∞ horizon!

V t(s) := max
a∈A

{
Qt(s, a)

}

Qt(s, a) := R(s, a) + γ ·
∑

s′∈S

T (s, a, s′) · V t−1(s′)

lim
t→∞

max
s
|V t(s)− V t−1(s)| = 0

Single Dynamic Programming Step

• Graphical view:

s1

a1

a2

Qt(s1, a1)

V t+1(s1)

s1

s2

s3

s2

V t(s1)

Qt(s1, a2)

V t(s2)

V t(s3)

V t(s2)

max

∑

s′

T (s, a, s′)·

∑

s′

T (s, a, s′)·

Synchronous DP Updates

(Value Iteration)

MAX

2

S
1

S
2

S
1

S
2

S
2

A
1

A
2

A
1

A
2

A
1

A
2

A
1

A
2

A
1

A
2

A
1

A
2

S
1

V (s)
2

S
1

1 1 1
V (s)

1

1
V (s)

V (s)V (s)
1

V (s)V (s)
2

3

0

0

2
2 2 2

V (s)
3

MAX

MAX

MAX

MAX

MAX

S

Value Function → Policy

• Can derive policy from value function V

• Given arbitrary value V (optimal or not)…

– A greedy policy πV takes action in each state that
maximizes expected value w.r.t. V:

– If can act so as to obtain V after doing action a in

state s, πV guarantees V(s) in expectation

πV (s) = argmax
a

{

R(s, a) + γ
∑

s′

T (s, a, s′)V (s′)

}

How to Specify

& Solve

“First-order MDPs”?

Following:

[Boutilier, Reiter, Price, IJCAI-01]

First-order (FO)MDPs: Case Statement

� <S,A,T,R> for FOMDPs defined in terms of cases

� E.g., express reward in BoxWorld FOMDP as…

¬ “

∀b,c. Dest(b,c) ⇒ BIn(b,c,s)

0

1
rCase(s) =

� Operators: Define unary, binary case operations

� E.g., can take “cross-sum” / (or 1, 0) of cases…

=////
¬ϕ

ϕ

20

10

¬φ

φ

4

3 14ϕ ∧∧∧∧ ¬φ

23¬ϕ ∧∧∧∧ φ

¬ϕ ∧∧∧∧ ¬φ

ϕ ∧∧∧∧ φ

24

13

� Stochastic actions using deterministic SitCalc:

� User’s stochastic action: A(x) = load(b,t)

� Nature’s choice: n(x)∈{loadS(b,t), loadF(b,t)}

Stochastic Actions & FODTR

� First-order decision-theoretic regression

� FODTR = expectation of regression:

FODTR[vCase(s),A(x)] = EP(n(x)|A(x)) [Regr[vCase(s),n(x)]]

� Probability distribution over Nature’s choice:

P(loadS(b,t) | load(b,t)) =

P(loadF(b,t) | load(b,t)) =

¬ snow(s)

snow(s)

.6

.1

¬ snow(s)

snow(s)

.4

.9

– FODTR specific to action variables

• Specify a backup operator for this

Q-functions and Backups

• FODTR almost gives us a Q-function

0¬On(b,t,s)

5On(b,t,s)
FODTR[vCase(unload(b,t))] =

0∃b,t. ¬On(b,t,s)

5∃b,t. On(b,t,s)
Bunload[vCase(s)] = rCase(s) //// γγγγ

– Yields a first-order Q-function

– Also need to add reward, discount

• Value iteration: (BoutReiPr, IJCAI-01)

– Obtain Vn+1 from Vn until (Vn+1 0 Vn) < ε

Symbolic Dynamic Programming

• What value if 0-stages-to-go?

– Obviously V0(s) = rCase(s)

• What value if 1-stage-to-go?

– We know value for each action

– Now just need max for every state

BA1[rCase(s)]

BA2[rCase(s)]

ϕ2

ϕ1

0

9

ϕ4

ϕ3

1

3

3else ϕ3

1else ϕ4

else ϕ2

ϕ1

0

9

V1(s) =

=

=ϕ1
9

3else ϕ3

ϕ1
9

3else ϕ3

1else ϕ4

ϕ1
9

maxs

• Convert to first-order ADD

b

a

1 0

case =

First-order ADDs
• Want to compactly represent:

0

1
case =

¬ ”

Var ⇔ FOL KB Var

b

a

∃x.[A(x) ∨ ∀y.A(x) ∧B(x) ∧ ¬A(y)]

[∃x.A(x)] ∨ ([∃x.A(x) ∧ B(x)] ∧ [∀y.¬A(y)])

≡ [∃x.A(x)]

≡ [∃x.A(x) ∧B(x)]

1

a

0

=First-order CSI!

• Push down quantifiers, expose prop. structure:

a ∨ (b ∧ ¬a)
0

1
case =

¬ ”

[Sanner, Thesis]

Results for SDP with FOADDs
• Replace case with FO(A)ADDs, e.g. BoxWorld

• Use FO(A)ADD ops for structured SDP (using γ=.9)…

∃b, t.T In(t,Paris, s) ∧On(b, t, s)

∃b, t. On(b, t, s)89 : unload(b, t)

80 : drive(t,Paris)

…72 : load(b, t)

∃b, c. BoxIn(b, c, s) ∧ ∃t.T In(t, c, s)

rCase(s) =

10 0

∃b. BIn(b,Paris, s)

vCase(s) =

100 : noop

∃b. BIn(b,Paris, s)

Correctness of SDP

• Show SDP for FOMDPs is correct w.r.t. ground MDP:

Ground Ground

MDPMDP

FOMDP ValueFOMDP Value

FunctionFunction

Ground MDPGround MDP

Value FunctionValue Function
Ground MDP SolutionGround MDP Solution

FirstFirst--orderorder

(FO) MDP(FO) MDP

G
ro

u
n

d
G

ro
u

n
d

Lifted FOMDP SolutionLifted FOMDP Solution

G
ro

u
n

d
G

ro
u

n
d

Related Purely Deductive Approaches

• Value Iteration:
– ReBel algorithm

(Kersting, van Otterlo, de Raedt, ICML-04)

– FOVIA algorithm for fluent calculus
(Karabaev & Skvortsova, UAI-05)

– First-order decision diagrams (FODDs)
(Wang, Joshi, Khardon, IJCAI-07; JK, ICAPS-08; WJK, JAIR-08)

• Approximate Linear Programming (ALP)
– First-order ALP (FOALP)

(Sanner & Boutilier, UAI-05)

• Policy Iteration
– Approximate policy iteration (FOAPI)

(Sanner & Boutilier, UAI-06)

– Modified policy iteration with FODDs
(Wang & Joshi, UAI-07)

• Factored FOMDPs – FOMDP extension
– Factored SDP and Factored FOALP

(Sanner & Boutilier, ICAPS-07)

Kristian
covers this.

Saket
covers this.

3rd place in
ICAPS IPPC5

(after FPG,
FF-Replan)

Conclusions

• MDP: model of decision-theoretic planning
– Common solution is dynamic programming

• “FOMDPs” are one model for lifted
decision-theoretic planning
– Use SitCalc specified action theory

– Use case to represent reward, probabilities

– Symbolic dynamic programming = lifted DP

– State & action abstraction for MDPs & DP

Relational Bellman
Algorithm (ReBeL)

Techniques for
First-order Planning

Kristian Kersting
Fraunhofer IAIS

ICAPS 2008 Tutorial

• Thanks to Prasad Tadepalli, Alan Fern, Kurt Driessens, Martijn Van Otterlo,

Tutorial Outline

• Motivation

• Deductive First-order Planning

– Situation Calculus

– Symbolic Dynamic Programming

– Relational Bellman Algorithm (ReBeL)

– First-order Decision Diagrams (FODDs)

• Inductive First-order Planning

• Conclusion

ReBeL
[Kersting, Van Otterlo, De Raedt ICML04]

A relational Bellman algorithm

• Instance of SDP

• Sacrifices expressivity/compactness for „simplicity“

• Abstract state = existenially quantified conjunction of

atoms (logical query) with equality constraints

• „Direct treatment“ of probabilistic actions

• Basic data structure = decision lists

Z
b

ReBeL’s Abstract States

a
Y

X

Y

X
W

Aside: Subsumption

• Recall that a clause like

C: grandparent(X,Z):- parent(X,Y), parent(Y,Z)

is C: {grandparent(X,Z), ~parent(X,Y), ~parent(Y,Z)}

• Thus for the following pair of clauses, C1 subsumes C2:

C1: mem(A,[B|C]):- mem(A,C).

C2: mem(0,[1,0]):- nat(0), nat(1), mem(0,[0]).

• Note that C1 "looks" more general.

Clause C1 subsume C2 iff there exists a

substitution θ s.t. θC1 is a subset of C2

Aside: Subsumption

employes(X,Y)employes(X,Y)

employes(scott,Y)employes(scott,Y)employes(X,X)employes(X,X)employes(X,scott)employes(X,scott)

employes(scott,scott)employes(scott,scott)

• Subsumption induces a „generality“ lattice

ReBeL’s Abstract Actions

An action is an expression of the from

on(X,Y), cl(X), cl(Z)

X ≠≠≠≠ Y, Y ≠≠≠≠ Z, X ≠≠≠≠ Z

cl(X), cl(Y), on(X,Z)

X ≠≠≠≠ Y, Y ≠≠≠≠ Z, X ≠≠≠≠ Z

0.9:move(X,Y,Z)

postcondition
precondition

Probability,
action name, and
action parameters

move(a,b,c)

cl(a), cl(b),
on(a,c),
a ≠≠≠≠ b, a ≠≠≠≠ c, b ≠≠≠≠ c

a

bc

a

bc

cl(a), cl(c),

on(a,b),
a ≠≠≠≠ b, a ≠≠≠≠ c, b ≠≠≠≠ c

V()=0

ReBeL’s Reward Model

a b V()=10
b

a

cl(a), cl(b) cl(a), on(a,b)

Absorbing States

• In RL, episodic tasks can be encoded using absorbing
states

– transition only to themselves

– generate zero reward

• In ReBeL, we encode absorbing states using artificial

deterministic functions

Integrity Constraints …

… are „simply“ Horn clauses

Note that actions are constraint, too. They cannot yield

illegal states.

• We used Frühwirth‘s Constraint Handling Rules and

Buntine‘s Generalized Subsumption (i.e., subsumption
w.r.t. to a background theory)

Summary of ReBel’s MDPs

• States: interpretations, i.e., set of ground atoms

• Abstract states: conjunction of atoms („query“)

• Actions: each outcome a probabilistic STRIP rule

• Abstract value functions: set of rules of the form

where c is a value and B an abstract

state

• Reward Function: initial value function V0

• Integrity Constraints: : horn clauses

a

b

on(a,b)

10.0

on(X,Y), cl(X), cl(Z)

X ≠≠≠≠ Y, Y ≠≠≠≠ Z, X ≠≠≠≠ Z

cl(X), cl(Y), on(X,Z)

X ≠≠≠≠ Y, Y ≠≠≠≠ Z, X ≠≠≠≠ Z

0.9:move(X,Y,Z)

postcondition precondition
Action name
and parameters

Theorem:

Every ReBeL MDP induces

a (possibly infinte) MDP

Goal states ≡≡≡≡ V0

1-step-to-go

2-steps-to-go

3-steps-to-go

n-steps-to-go

3

Vt+1

maximizing

4

Vt

Qt+1

combining

Qpartia

l

regression

valuating

1

2

Recap: SDP Step 1: Regression

• Abstract actions define how states change

• In order to do the update from staet Z, we need to

consider all states that can reach Z by applying the
action

• Intuition: ‚Revers‘ the action effects

• Compute the weakest precondition of Z given the action

on(X,Y), cl(X), cl(Z)
X ≠≠≠≠ Y, Y ≠≠≠≠ Z, X ≠≠≠≠ Z

cl(X), cl(Y), on(X,Z)
X ≠≠≠≠ Y, Y ≠≠≠≠ Z, X ≠≠≠≠ Z

0.9:move(X,Y)

Which

states to

upate?

Step 1: Regression

Two cases:

1. move caused on(a,b): We have been in abstract state

2. move did not couse on(a,b): We moved X on Y but not a on b. So,
we have been in abstract state

satisfying

which guarantees that applying move(X,Y) will not affect on(a,b).

Simplifies to

on(X,Y), cl(X), cl(Z)
X ≠≠≠≠ Y, Y ≠≠≠≠ Z, X ≠≠≠≠ Z

cl(X), cl(Y), on(X,Z)
X ≠≠≠≠ Y, Y ≠≠≠≠ Z, X ≠≠≠≠ Z

0.9:move(X,Y)
b

a

on(a,b)

Step 1: Regression
on(X,Y), cl(X), cl(Z)
X ≠≠≠≠ Y, Y ≠≠≠≠ Z, X ≠≠≠≠ Z

cl(X), cl(Y), on(X,Z)
X ≠≠≠≠ Y, Y ≠≠≠≠ Z, X ≠≠≠≠ Z

0.9:move(X,Y)

move(a,b)
cl(a), cl(b), on(a,Z),

a ≠≠≠≠ b, a ≠≠≠≠ Z, b ≠≠≠≠ Z

a

bZ

Match on(a,b) with on(X,Y)a

b

m
o
v
e
(X
,Y
)

cl(X), cl(Y), on(X,Z),
X ≠≠≠≠ Y, Y ≠≠≠≠ Z, X ≠≠≠≠ Z

and on(a,b) ≠≠≠≠ on(X,Y)

and on(a,b) ≠≠≠≠ on(X,Z)

a

b Y

X

Z

o
n
(a
,b
) d
o
e
s n
o
t m

a
tch

 o
n
(X
,Y
)

Step 1: Regression

• on(a,b) is simple effect. In general, we have multiple
effects, i.e., conjuctions of atoms.

Steps 2&3: Valuation & Combination …

0.9 : move(a,b)

Z

Vt = 10

Qt+1 = 0 + 0.9 ⋅⋅⋅⋅ γγγγ ⋅⋅⋅⋅ 10 = 8.1

Vt = 0

b

Step 2:

Computing values for a
single outcome

Step 3:
Combining outcomes

o1 o2

glb

a a

b

Z Z

Q1 = 8.1 Q2 = 0.0

Z

Q = 8.1

+

Outcome 1 Outcome 2

a X a

b Y b

… that means computing the Q rules

Aside: Greatest Lower Bound (GLB)

• Recall that subsuption induces a lattice (over the reduced clauses).

Hence, for each node, we can compute the greatest lower bound.

• GLB: set of ground states, in which both abstract states hold.

employes(X,Y)employes(X,Y)

employes(scott,Y)employes(scott,Y)employes(X,X)employes(X,X)employes(X,scott)employes(X,scott)

employes(scott,scott)employes(scott,scott)

Q-Rules after first „Iteration“

Step 4: Maximizing …

Vt+1(s) = maxa Qt+1(s,a)

10 : move(X,Y) ���� cl(X), cl(Y)
5 : move(a,b) ���� cl(a), cl(b)

… that means computing the next value function by maximizing the Q-rules

Q=10

Q=10

Q=5

Q=4

Q=3

Q=0

Q =10 = V

Q =10 = V

Q = 4 = V

Q = 0 = V

Step 4: Maximizing …

Step 4: Maximizing … Step 4: Maximizing …

Finally, we get … Blocks World

Blocks World: cl(a) Blocks World: on(a,b)

ReBel: Logistics Domain ReBel: Logistics Domain

• ReBeL is an instance of SDP

– Avoids the full state and action enumeration of classical
approaches

– Lifted solution applies to any (ground) instance

– Basic tool: Constraint-Logic Programming

• Sacrifices expressivity/compactness for „simplicity“

• Employs constraint logic programming

• Background Knowledge is not a feature, but a necessity

• Convergence: Structural and Value level

Conclusions

First-order Decision
Diagrams (FODDs)

Techniques for
First-order Planning

ICAPS 2008 Tutorial

• Thanks to Chenggang Wang and Roni Khardon

Saket Joshi
Tufts University

Tutorial Outline

• Motivation

• Deductive First-order Planning

– Situation Calculus

– Symbolic Dynamic Programming

– Relational Bellman Algorithm (ReBeL)

– First-order Decision Diagrams (FODDs)

• Inductive First-order Planning

• Conclusion

Motivation for FODDs
[Wang, Joshi, Khardon, IJCAI 07, JAIR08]

SDP ReBeL FODD

Expressive

Inefficient

Less

Expressive

Efficient

Expressive

Efficient

CompactNot CompactLess Compact

Z

X

Y

1.5 4.5

true

false

Propositional ADDs - Syntax

� Variable valuation

− {X = true, Y = false, Z= true}

� Function output: 1.5

Propositional ADDs - Semantics

Z

X

Y

1.5 4.5

true

false

For a given variable ordering,
every function has a

unique representation.

Z

X

Y

1.5 4.5

Propositional ADD

true

false

Propositional ADDs – Normal Form

But, how do we deal

with logical atoms ?

But, how do we deal

with logical atoms ?

�Propositional ADD �First-order decision diagram

Z

X

Y

1.5 4.5

true

false

First-Order Decision Diagrams
(FODDs) - SyntaxIdea: nodes are existentially quantified atoms (goals)Idea: nodes are existentially quantified atoms (goals)

Goal

(node
literal)

1.5 4.5

true (goal)
false (goal)

Q(y)

P(x)

H(x,y)
variable

Bin (b, Paris)

19 On (b, t)

 Tin (t, Paris)

 rain

 6.3 0 8.1
0 :Otherwise 4.

1.8:),(),(,,

),(, 3.

3.6:),(),(,,

),(, 2.

19:),(, 1.

rainParistTintbOntb

ParisbBinb

rainParistTintbOntb

ParisbBinb

ParisbBinb

¬∧∧∃

∧¬∃

∧∧∃

∧¬∃

∃

First-Order Decision Diagrams (FODDs)

– Semantics based on Single Paths

Same as for decision trees and their relational variants

such as TILDE [Blockeel, De Raedt 98].

Same as for decision trees and their relational variants

such as TILDE [Blockeel, De Raedt 98].

� Domain: {1, 2, 3}

� Interpretation I: {p(1), q(2), h(3)}

� ζ1 = { x/1, y/1}

� MAPB(I, ζ1) = 0

p (x)

q (x)

h (y)

 1

0

 1

0

First Order Decision Diagrams (FODDs) –

Semantics based on Multiple Paths

Semantics defined in terms of variable valuations MAPB(I, ζ)Semantics defined in terms of variable valuations MAPB(I, ζ)

� Domain: {1, 2, 3}

� Interpretation I: {p(1), q(2), h(3)}

� ζ1 = { x/2, y/3}

� MAPB(I, ζ1) = 1

First Order Decision Diagrams (FODDs) –

Semantics based on Multiple Paths

p (x)

q (x)

h (y)

 1

0

 1

0

Semantics defined in terms of variable valuations MAPB(I, ζ)Semantics defined in terms of variable valuations MAPB(I, ζ)

� Domain: {1, 2, 3}

� Interpretation I: {p(1), q(2), h(3)}

� MAPB(I) = 1

First Order Decision Diagrams (FODDs) –

Semantics based on Multiple Paths

Semantics defined in terms of variable valuations MAPB(I, ζ)

MAPB(I) = max ξ{MAPB(I, ξ)}

- take the maximum over all paths -

Semantics defined in terms of variable valuations MAPB(I, ζ)

MAPB(I) = max ξ{MAPB(I, ξ)}

- take the maximum over all paths -

p (x)

q (x)

h (y)

 1

0

 1

0

First Order Decision Diagrams (FODDs) –

Combination

• Assume a fixed order among predicates and parameters

• Choose lower label as new root and combine sub-diagrams

recursively.

• Stop when combining two leaves; perform numerical

operation

p (x)

p (y)

 1

 0

1

B1

First Order Decision Diagrams (FODDs) –

Reductions

Is this the most compact representation?Is this the most compact representation?

Strong Reduction

p(x)

1

1

0

p(x) q(x)

p(x)

1

1

p(x)

R5

R1

Background Knowledge

Weak Reduction

Under any interpretation, for every valuation
reaching value 4, there is another valuation

reaching 5

p(x)

p(y)

0

5

4

p(x)

0 5

R7

p (x)

 p (y)

 1

 0

1

B1 B2

1

Iany for)()(21 IMAPIMAP BB =

No!!! Several reduction

operators have been
developed

No!!! Several reduction

operators have been
developed

First Order Decision Diagrams (FODDs) –

Reductions

Reductions are key
to practical FODDs.

The rest is SDP

Reductions are key
to practical FODDs.

The rest is SDP

Value Iteration using FODDs

• Instance of SDP

• Let‘s go through an example

FODDs for MDPs - Logistics Domain

Revisited

• Predicates

Bin (Box, City),

Tin (Truck, City),

On (Box, Truck)

• Actions

Load(box,truck) {LoadS, LoadF}

Unload(box,truck) {UnloadS, UnloadF}

Drive(truck,city)

Bin (B, C)

1 B= b*

On (B, t*)

Tin (t*, C)

1 0

The TVD for Bin(B, C)
under unloadS(b*, t*)

Encoding the Domain Dynamics

- Truth value diagrams (TVDs)
• For every action A

schema and predicate
schema P, a TVD is a
FODD with {0,1} leaves

• Gives the truth value of
the predicate P in the
next state when A is
executed in the current
state.

• It captures the truth
values for all instances of
P

• Only the variables in A
and P can appear in the
corresponding TVD

• Can express universal
effects

Bin (B, C)

1 B= b*

On (B, t*)

Tin (t*, C)

1 0

The TVD for Bin(B, C)
under unloadS(b*, t*)

Truth value diagrams (TVDs)

p(x)

 1 0

 0

undo
bring

about

TVD template

predicate is true

if it was true before and is not undone by the action

or was false before and is brought about by the action

predicate is true

if it was true before and is not undone by the action

or was false before and is brought about by the action

Multi-path semantics is beneficial. With single path semantics, a TVD would
have to specify all possible ways a predicate can become true

Multi-path semantics is beneficial. With single path semantics, a TVD would
have to specify all possible ways a predicate can become true

Encoding Nature’s Choice and Reward

Function

rain

0.7 0.9

• Action choice probabilities

• Reward and value functions

Probability of UnloadS being chosen

given Unload is executed.

 Bin (b, Paris)

10 0

Value Iteration with FODDs

)]'(),|'Pr()([max)(
'

1 sVasssrsV n

Ss

Aan ∑
∈

∈+ += γ

� The value iteration algorithm

VnVn+1

)))(,(Regr))((()()(

1 xAVxAprobVT jnjjn

xA

n ⊗⊕=+

� The first-order value iteration

1.

VnVn+1

Value Iteration with FODDs

)]'(),|'Pr()([max)(
'

1 sVasssrsV n

Ss

Aan ∑
∈

∈+ += γ

� The value iteration algorithm

VnVn+1

)))(,(Regr))((()()(

1 xAVxAprobVT jnjjn

xA

n ⊗⊕=+

�The first-order value iteration
1.

),(, ParisbBinb∃

),(, ParisbBinb¬∃

),(, ParisbBinb∃

),(

),(*

*,,

ParistTin

tbOntt

bbtb

∧

∧=

∧=∃ 10

0

UnloadS

Value Iteration with FODDs

)]'(),|'Pr()([max)(
'

1 sVasssrsV n

Ss

Aan ∑
∈

∈+ += γ

� The value iteration algorithm

� The first-order value iteration

1.

))((maxobj)(

11 n

xA

n

A

n VTRQ ++ −⊗⊕= γ2.

)))(,(Regr))((()()(

1 xAVxAprobVT jnjjn

xA

n ⊗⊕=+

b2

b1

t1

�Unload(b1,t1)

�Unload(b2,t1)

Value Iteration with FODDs

)]'(),|'Pr()([max)(
'

1 sVasssrsV n

Ss

Aan ∑
∈

∈+ += γ

� The value iteration algorithm

� The first-order value iteration

1.

))((maxobj)(

11 n

xA

n

A

n VTRQ ++ −⊗⊕= γ2.

)))(,(Regr))((()()(

1 xAVxAprobVT jnjjn

xA

n ⊗⊕=+

3. A

nAn QV 11 max ++ =

�Vn�Vn+1

� Vn�Vn+1

Bin (b, Paris)

On (b, t*)

b= b*

Tin (t*, Paris)

10 0

)))(,(Regr))((()()(

1 xAVxAprobVT jnjjn

xA

n ⊗⊕=+

�Bin(b,Paris)

�10 �0

0V

Value Iteration with FODDs - Regression by

block replacement

Replace each node with the corresponding TVD, with the

outgoing edges connected to 0 and 1 leaves of the TVD

Value Iteration with FODDs - Regression by

block replacement
Block combination:

Parent B, the true branch
child Bt, the false branch
child Bf

Tin(t,Paris)

1 0
×

 rain

6.3 8.1
+

Tin(t,Paris)

0 1
× 0

Bin (b, Paris)

19 On (b, t)

Tin (t, Paris)

rain

 6.3 0 8.1

b= b*

On (b, t)

t= t*

0

0

Tin (t, Paris)

rain

 6.3 8.1

0

Bin (b, Paris)

b= b*

On (b, t*)

Tin (t*, Paris)

19

1V

Value Iteration with FODDs - Adding

regression results
Each regression result multiplied with the

corresponding choice probability

Bin (b, Paris)

10 b= b*

On (b, t*)

Tin (t*, Paris)

10 0

�=

rain

0.7 0.9

Bin (b, Paris)

7

b= b*

On (b, t*)

Tin (t*, Paris)

rain

9

0

)))(,(Regr))((()()(

1 xAVxAprobVT jnjjn

xA

n ⊗⊕=+

⊗

Value Iteration with FODDs - Adding

regression results
Standardize apart different regression results before

adding

)))(,(Regr))((()()(

1 xAVxAprobVT jnjjn

xA

n ⊗⊕=+

�=

Bin (b1, Paris)

7

b1= b*

On (b1, t*)

Tin (t*, Paris)

rain

9

 0

Bin (b2, Paris)

3 1

rain 0

rain

rain

Bin (b1, Paris)

b1= b*

On (b1, t*)

Tin (t*, Paris)

10

Bin (b2, Paris)

10

7 9

Bin (b2, Paris)

b1= b*

On (b1, t*)

Tin (t*, Paris)

7 9

0 rain

3 1

⊕

� Finally, reduce the resulting FODD

Value Iteration with FODDs - Object

maximization

)))(,(Regr))((()()(

1 xAVxAprobVT jnjjn

xA

n ⊗⊕=+

))((maxobj)(

11 n

xA

n

A

n VTRQ ++ −⊗⊕= γ

0 9

Bin (b1, Paris)

10

On (b1, t*)

Tin (t*, Paris)

rain

 7

b1= b* Rename

action

parameters

Maximizing over the action parameters to get the maximum
value achievable by an instance of this action

Reduction

�1

�2

0 9

Bin (b1, Paris)

10

On (b1, t)

 Tin (t, Paris)

 rain

 7

b1= b
Bin (b1, Paris)

10 On (b1, t)

Tin (t, Paris)

rain

 7 0 9

For free due to

multi-paths

semantics

For free due to

multi-paths

semantics

Value Iteration with FODDs

)))(,(Regr))((()()(

1 xAVxAprobVT jnjjn

xA

n ⊗⊕=+

))(max(obj)(

11 n

xA

n

A

n VTRQ ++ −⊗⊕= γ

 Bin (b, Paris)

10 0

�1

�2

Bin (b1, Paris)

10 On (b1, t)

Tin (t, Paris)

rain

 7 0 9

0.9

 Bin (b, Paris)

19 On (b, t)

Tin (t, Paris)

rain

 6.3 0 8.1

�=

unload
Q1

⊕ ⊗

Value Iteration with FODDs - Maximizing

over actions

Bin (b, Paris)

19 On (b, t)

Tin (t, Paris)

rain

 6.3 0 8.1

 Bin (b1, Paris)

19 0

 Bin (b2, Paris)

19 0

A

nAn QV 11 max ++ =

unloadQ1

loadQ1

drive
Q1

1V

Bin (b, Paris)

19 On (b, t)

Tin (t, Paris)

rain

 6.3 0 8.1

3

max

ICAPS IPPC Results

Logistis:

– Without approx.

• slower than ReBel

– with approx.

• comparable

Tireworld

Fileworld

FODDs for Relational MDPs - Summary

• FODDs compactly represent functions
such as truth values, Q-values etc. over

logical spaces

• Complete set of operators to reduce,

multiply, add, etc. FODDs

– direct implementation of SDP

FODDs for Relational MDPs - Summary

• Approximation a la SPUDD possible: merge …

– substructures with similar values

– Leaves, which are within a certain distance,

– ….

• Policy iteration approach exists

– Does not implement the same algorithm as original PI;

instead it incorporates an element of policy improvement

– Theorem: the sequence of value functions obtained from

relational modified policy iteration converges monotonically
to the optimal value function.

• Initial approach on partially observed, relational MDPs

Inductive First-Order
Planning

Techniques for
First-order Planning

Kristian Kersting
Fraunhofer IAIS

ICAPS 2008 Tutorial

• Thanks to Prasad Tadepalli, Alan Fern, Kurt Driessens, Martijn Van Otterlo,

Tutorial Outline

• Motivation

• Deductive First-order Planning

– Situation Calculus

– Symbolic Dynamic Programming

– Relational Bellman Algorithm (ReBeL)

– First-order Decision Diagrams (FODDs)

• Inductive First-order Planning

• Conclusion

Percepts Actions

Pickup(a)?

World

So far: Classical Planning …

A

B

fully

observable

deterministic

perfect model + goals

Percepts Actions

Pickup(a)?

World

… and relational MDPs

A

B

fully

observable

deterministic

stochastic

Transition model + Utilities

perfect model + goals

Percepts Actions

Pickup(a)?

World

Now: Reinforcement Learning

A

B

fully

observable stochastic

Transition model + Utilities

• No knowledge of environment

– Can only act in the world and observe states and reward

• Situated agent: learner must decide what actions to

take at each step

• Must solve credit/blame assignment to actions

– What actions are responsible for success?

• Tradeoff between exploiting what is known vs.

exploring something new

• Must act with limited amount of reasoning

Reinforcement Learning

Model-Based vs. Model-Free RL

• Model-based approach to RL:
– learn the MDP model, or an approximation of it

– use it for policy evaluation or to find the optimal policy

– can use value iteration or policy iteration treating the
learned model as if it is correct

– can do sample-based update of the value function

• Model-free approach to RL:
– derive the optimal policy without explicitly learning the

model

– learn an action-based value function or Q-function

– we will focus on this in this tutorial !!!

Reinforcement Learning

agent

state s

reward r

action a

Agent’s goal: Choose actions to maximize total reward

Environment

Reinforcement Learning

Start

Goal

1.0

0.9

0.81

… and so on …

Reinforcement Learning

1.0

Learn a policy mapping states to optimal actions

Start

Goal

Value Function

Compute

Start

Goal

0.9

0.9

0.81

0.81

0.729

0.729

0.6560.5910.531

0.478 0.431

0.431 0.387

0.387

0.349

1.0
• Prefer actions such that

the maximal expected
one-step ahead value.

• Could also be done using
Q-Values, i.e, values
assigned to state action
pairs (e.g. Q-Learning)

Q-Learning: Model-Free RL

(1) Learn the optimal Q function.

(2) Act greedily with respect to Q(s,a).
– Q(s,a) is the expected value of taking action a in state s and then

following the optimal policy thereafter.

• Optimal Q-function satisfies
s.t.

• After taking action a in state s and reaching s’:

)',(max)',,(),(

)'()',,(),(),(

'
'

'

asQsasTasR

sVsasTasRasQ

a
s

s

∑

∑

+=

+=

γ

γ
)',(max)(

'
asQsV

a
=

)),()','(max),((),(),(
'

asQasQasRasQasQ
a

−++← γα

(noisy) sample of Q-value
based on next state

1. Start with initial Q-function (e.g. all zeros)

2. Take action according to an explore/exploit policy
(should converge to greedy policy)

3. Perform update

Q(s,a) is current estimate of optimal Q-function.

4. Goto 2

)),()','(max),((),(),(
'

asQasQasRasQasQ
a

−++← γα

h Does not require model since we learn Q directly!
h Uses explicit |S|x|A| table to represent Q

h Explore/exploit policy directly uses Q-values

5E.g. use ε-greedy or Boltzmann exploration.

Q-Learning A Grid ExampleRewards:
10 for reaching the goal state
-1 for every action.

α is set to 1 for simplicity.
Update: Q(s,a) = r +Maxb (Q(s’,b))

9

A Grid Example

98

Rewards:
10 for reaching the goal state
-1 for every action.

α is set to 1 for simplicity.
Update: Q(s,a) = r +Maxb (Q(s’,b))

A Grid Example

987

Choose an action a = argmaxa Q(s,a) reaching s’

Update Q(s,a) = r + Maxb Q(s’,b)

A Grid Example
Choose an action a = argmaxa Q(s,a) reaching s’

Update Q(s,a) = r + Maxb Q(s’,b)
9876

5 6

A Grid Example

9876

5 6

4
5

9

8

7

6

543

2

2

2

3

5

4 3

4

3
3

3

2

The values converge to the optimal Q-values under GLIE policy

Choose an action a = argmaxa Q(s,a) reaching s’

Update Q(s,a) = r + Maxb Q(s’,b)

Large-Scale Problems
• Typical state spaces in AI domains are exponentially

large

− Bellman’s curse of dimensionality

• Learning a model and utility function
– Can be difficult to learn good models for large complex environments

– But if we can learn a model then learning utility function is simpler
than learning Q(s,a)

– Also can reuse the model for “related problems”

• Learning Q-function
– Simpler to implement since we don’t need to worry about representing

and learning a model

– But Q-functions can be substantially more complex than utility
functions (they must somehow make up for not having the model)

Large Relational State Spaces

• When a problem has a large state space
we can not longer represent the V or Q
functions as explicit tables
– Generally the case for RMDPs with a non-

trivial numbers of objects

• Even if we had enough memory
– Never enough training data!

– Learning takes too long

• What to do??

• RMDPs with fixed set of objects can be “propositionalized”

– Describe states via traditional feature vectors that list values of all
properties and relations.

• [on(a,b)=true, on(b,a)=false, ontable(a)=false, ontable(b)=true]

• Can then directly apply feature-based RL

– Loses the relational structure provided by objects

– Policies can’t be applied directly to new object domains

– Can be difficult to learn from such large feature vectors

• Relational RL attempts to learn value functions resp.
policies that directly exploit relational structure:

– Faster learning w.r.t. propositionalization even with fixed # of
objects

– Learn policies that generalize across object domains

Relational RL

• Function Approximation

• Relational Value Function Learning

– Propositionalization

– Relational Regression

• Relational Policy Learning

– Approximate Policy Iteration

– Nonparametric Policy Gradient

Roadmap for RRL

Function Approximation

• Never enough training data!
– Must generalize what is learned from one situation to

other “similar” new situations

• Q-function updates arising from experience in one
state can influence Q-estimate in other similar
states
– Facilitates generalization of experience

• We will first consider feature-based approximation

Basic Idea:
1.Represent Q-function using a compact representation

• Function encoding size much smaller than table

2.Learn function from experience instead of table

Feature Based Function Approx.

• Define a set of n state-action features f1(s,a), …, fn(s,a)

– The features are used as our representation of state-action pairs

– State-action pairs with similar features will be considered similar

– In RRL s and a are relational states and actions

• Example Representation: linear approximator

• More generally one can use any form of function approximator
in terms of these features

– Regression trees, Kernel regression, Neural networks, etc.

),(...),(),(),(ˆ
22110 asfasfasfasQ nnθθθθθ ++++=

Q-Learning for Linear Approximators

1. Start with initial parameter values

2. Take action according to an explore/exploit
policy

3. Perform Q-update for each parameter

4. Goto 2

?←iθ

Aside: Gradient Descent for Squared Error

• Given: sequence of states-action pairs with target Q-
values

• Goal: minimize the sum of squared errors between our
estimated function and each target value:

• After seeing j’th state the stochastic gradient descent
rule tells us to update all parameters by:

() 2),(),(ˆ
2

1
jjjjj asqasQE −= θ

squared error of example j our estimated value

for j’th state

learning rate

target value for j’th state

i

jj

jj

j

i

j

i

j

ii

asQ

asQ

EEE

θθθ
αθθ θ

θ
∂

∂

∂

∂
=

∂

∂

∂

∂
−←

),(ˆ

),(ˆ
,

K,),(,,,),(,, 22221111 asqasasqas

Aside: continued

()
i

jj

jjjji

i

j

ii

asQ
asQasq

E

θ
αθ

θ
αθθ θ

θ
∂

∂
−+=

∂

∂
+←

),(ˆ
),(ˆ),(

),(ˆ
jj

j

asQ

E

θ∂

∂

• For a linear approximation function:

• Thus the update becomes:

),(...),(),(),(ˆ
22111 asfasfasfasQ nnθθθθθ ++++=

()),(),(ˆ),(jjijjjjii asfasQasq θαθθ −+←

),(
)(ˆ

jji

i

j
asf

sQ
=

∂

∂

θ
θ

depends on form of

approximator

Q-Learning for Linear Approximators

1. Start with initial parameter values

2. Take action according to an explore/exploit
policy

3. Perform Q-update for each parameter

4. Goto 2

()),(),(ˆ)','(ˆmax),(
'

asfasQasQasR i
a

ii θθβαθθ −++←

Predicted Target q(s,a) Current estimate

• Function Approximation

• Relational Value Function Learning

– Propositionalization

– Relational Regression

• Relational Policy Learning

– Approximate Policy Iteration

– Nonparametric Policy Gradient

Roadmap for RRL Relational RL via Feature Engineering

• What if our states and actions are relational?

• One approach: engineer a fixed set of “relational
features”
– Each feature returns a value for any relational state-action pair

– Features should be well defined regardless of the number of objects

• Unlike naïve propositionalization approach

– Ideally feature values should be similar for similar relational states

• With such a feature representation, can use feature-
based Q-learning to learn a relational Q-function.
– Success relies critically on ability to define appropriate features

– Often requires significant effort and insight into problem

Example: Tactical Battles in Wargus

• Wargus is real-time strategy (RTS) game
– Tactical battles are a key aspect of the game

• RL Task: learn a policy to control n friendly agents in a
battle against m enemy agents
– Policy should be applicable to tasks with different sets and

numbers of agents

– That is, policy should be relational

5 vs. 5 10 vs. 10

Example: Tactical Battles in Wargus

• Relational States: contain information about the
locations, health, and current activity of all friendly and
enemy agent

• Relational Actions: Attack(F,E)
– causes friendly agent F to attack enemy E

• Policy Structure: each decision cycle loop through
each friendly agent F and use a learned Q-function to
select enemy to attack
– I.e. select enemy E for F that maximizes Q(s,Attack(F,E))

• Q(s,Attack(F,E)) is relational since any agents can be
substituted for F and E
– We used a linear function approximator with Q-learning

[Fern et al.]

Example: Tactical Battles in Wargus

• Engineered a set of relational features
{f1(s,Attack(F,E), …., fn(s,Attack(F,E)}

• Example Features:
– # of other friendly agents that are currently attacking E

– Health of friendly agent F

– Health of enemy agent E

– Difference in health values

– Walking distance between F and E

– Is E the enemy agent that F is currently attacking?

– Is F the closest friendly agent to E?

– Is E the closest enemy agent to E?

– …

• Features are well defined for any number of agents

),(...),(),(),(ˆ
22111 asfasfasfasQ nnθθθθθ ++++=

Example: Tactical Battles in Wargus

• Linear Q-learning in 5 vs. 5 battle

-100

0

100

200

300

400

500

600

700

D
a
m

a
g

e
 D

if
fe

re
n

ti
a
l

Episodes

Example: Tactical Battles in Wargus

• Initialize Q-function for 10 vs. 10 to one learned for 5 vs. 5
– Initial performance is very good which demonstrates relational

generalization from 5 vs. 5 to 10 vs. 10
• Function Approximation

• Relational Value Function Learning

– Propositionalization

– Relational Regression

• Relational Policy Learning

– Approximate Policy Iteration

– Nonparametric Policy Gradient

Roadmap for RRL

Relational Regression

• The previous approach relies on feature

engineering to reduce a relational problem to a

propositional one

– Requires significant effort and trial-error

• Can we learn a relational value function

automatically without propositionalization?

• Several relational regression algorithms for batch

supervised learning

– Relational regression trees, Gaussian processes,
Nearest neighbors

Relational Regression Trees

on(yellow,grey).
on(green,floor).

on(grey,floor).
on(brown,green).

clear(yellow).
clear(brown).

move(brown,floor).

goal_on(green,grey).

move(X,Y), goal_on(A,B)

on(X,A)

on(Z,B)

Qvalue = 0.3

clear(Z)Qvalue = 0.8

Qvalue = 0.1Qvalue = 0.4

yes no

yes no

yes no

• Internal nodes can have relational tests

• Tests can involve variables

• Can depend on input objects (X,Y,A,B)

[Blockeel, De Raedt AIJ 101]

Qvalue = 0.8

Original RRL algorithm
• TILDE is a batch learning approach, but RL is an

incremental process

• RRL will accumulate training data and call TILDE

periodically

initialize an empty example-set
while (true)

• generate episode through the use
of a standard Q-learning algorithm

using the current tree as Q-function

• generate example for each
state-action pair encountered

• add the examples to the example-set
• run tilde on the knowledge-base

),,(iii qas

[Dzeroski et al. MLJ 43(1/2)]

RRL Example

S1

S2

S4

S3

S5

Goal

R=0

R=0

R=0

R=1

R=0

R=0

2222

3333

4444

5555

6666

1111

• Use current policy until a goal-state is reached

RRL Example

S1

S2

S4

S3

S5

Goal

R=0

R=0

R=0

R=1

R=0

Q=1.0

R=0

2222

3333

4444

5555

6666

1111

)','(max),(
'

asQrasQ
a

γ+←

• Back propagate Q-value estimates

RRL Example

S1

S2

S4

S3

S5

Goal

R=0

R=0

R=0

R=1

R=0

Q=0.66

Q=0.73

Q=0.81

Q=0.9

Q=0

Q=0.59

R=0

2222

3333

4444

5555

6666

1111

)','(max),(
'

asQrasQ
a

γ+←

state(s3).

action(a).

qvalue(0.56).

state(s1).

action(b).

qvalue(0.66).

state(s2).

action(c).

qvalue(0.73).

state(s5).

action(e).

qvalue(0.90).

state(s3).

action(d).

qvalue(0.81).

state(s4).

action(f).

qvalue(1.00).

• Store (state,action,qvalue) triples as batch training set
• Give to TILDE to learn a tree

Extension RRL-TD

• Problems with RRL approach

– Example set increases with every episode

– No value-update of old examples

– Trees are rebuild from scratch each episode

• Build trees incrementally

– G-tree algorithm [Chapman & Kaelbling, IJCAI 91]

is an online, incremental regression tree learner for propositional
data

– Straightforward to extend to relational setting

The TG algorithm

move(X,Y), goal_on(A,B)

on(X,A)

on(Z,B)

test1: 4 3.4 5.4 / 2 1.2 1.4
test2: 3 2.5 4.2 / 3 2.3 3.4

...

clear(Z)

yes no

yes no

yes no

test1: 4 3.4 5.4 / 2 1.2 1.4
test2: 3 2.5 4.2 / 3 2.3 3.4

...

test1: 4 3.4 5.4 / 2 1.2 1.4
test2: 3 2.5 4.2 / 3 2.3 3.4

...

on(R,Z) : 4 3.4 5.4 / 2 1.2 1.4
on(Y,B) : 3 2.5 4.2 / 3 2.3 3.4
on(B,R) : 1 0.8 0.6 / 5 4.2 2.4
clear(R) : 3 2.1 4.8 / 3 2.7 2.8
clear(B) : 2 4.2 3.7 / 4 2.1 2.5

on(yellow,grey).

on(green,floor).

on(grey,floor).

on(brown,green).

clear(yellow).

clear(brown).

move(brown,floor).

goal_on(green,grey).

0.9

on(R,Z) : 5 4.3 6.4 / 2 1.2 1.4
on(Y,B) : 3 2.5 4.2 / 4 4.2 5.3
on(B,R) : 1 0.8 0.6 / 6 5.4 4.5
clear(R) : 4 3.5 3.5 / 3 2.7 2.8
clear(B) : 2 4.2 3.7 / 5 4.8 3.9

clear(R)

yes no

test1: 0 0 0 / 0 0 0
test2: 0 0 0 / 0 0 0

...

test1: 0 0 0 / 0 0 0
test2: 0 0 0 / 0 0 0

...

Based on the

G-tree algorithm

and the Tilde algorithm

Per leaf and per test:

• Number of positive and negative examples

• Sum of q-values

• Sum of squared q-values

– Allows to compute the significance of tests

initialize tree to a single root node
while (true)

generate episode through the use
of a standard Q-learning algorithm

using the current tree as Q-function

generate example for each
state-action pair encountered

update tree using the TG-algorithm and
the generated examples

RRL-TG algorithm

• No need to accumulate examples generated during RRL

• Simply update tree incrementally

),,(iii qas

[Driessens et al. ECML01]

Experiments. Blocks World

a d

e

c

b

a

b

c

d

StackingStackingStackingStacking

a bc

UnstackingUnstackingUnstackingUnstacking

b e

d

c

a

On(a,bOn(a,bOn(a,bOn(a,b))))

Timings

 3 blocks3 blocks3 blocks3 blocks 4 blocks4 blocks4 blocks4 blocks 5 blocks5 blocks5 blocks5 blocks

Batch RRL Stack (30 epochs) 6.16 min 62.4 min 306 min

 Unstack (30 epochs) 8.75 min Not Stated Not Stated

 On(a,b) (30 epochs) 20 min Not Stated Not Stated

RRL-TG Stack (200 epochs) 19.2 sec 26.5 sec 39.3 sec

 Unstack (500 epochs) 1.10 min 1.92 min 2.75 min

 On(a,b) (5000 epochs) 25.0 min 57 min 102 min

State
and

Action
Description

0.73

State
and

Action
Description

0.81

State
and

Action
Description

0.9

State
and

Action
Description

1.0

Instance Based Regression

Qvalue

(State,Action)
pairs

x

• Requires a distance metric or kernel between relational state-action pairs

[Driessens, Ramon ICML03]

Instance-Based Regression

• Instance based regression typically

– Stores past examples (s,a,q)

– Given a new example (s’,a’) interpolate wrt example set

to estimate q’

• Require a “kernel” K(x,x’) that measures

distances between any examples x and x’

• A variety of algorithms exist that turn a kernel

function into a regression method

– Gaussian Processes, Support Vector Regression, K-

NN methods

Kernel for relational data?

k(;)

Graph Kernels

• Relational can be viewed as graphs

• A number of kernels exist for graphs

clear

on
on

on

on

on

on
on

block

block

block

block

floor

action

clear

on

on

on

on

on
on

block

block

block

block
floor

action

[Driessens et al. MLJ 64(1-3)]

Some Experimental Results

• Function Approximation

• Relational Value Function Learning

– Propositionalization

– Relational Regression

• Relational Policy Learning

– Approximate Policy Iteration

– Nonparametric Policy Gradient

Roadmap for RRL

Direct Policy Learning
• Value functions can often be much more complex

to represent than the corresponding policy

• When policies have much simpler representations
than the corresponding value functions, direct
search in policy space can be a good idea

Goal: cl(a)

Policy: put each block on top of a on the floor

• Function Approximation

• Relational Value Function Learning

– Propositionalization

– Relational Regression

• Relational Policy Learning

– Approximate Policy Iteration

– Nonparametric Policy Gradient

Roadmap for RRL

Challenge Problem

Consider the following class of stochastic
blocks world problems:

Goal: clear off blocks in the goal

?

hOptimal policy is:

5obvious to us

5simple and compact

5independent of number of blocks

?1.
?

2.

Policy for Simple Domains

A compact policy for this domain:

1. If holding a block, put it down on the

table, else…

2. Pick up a clear block above a block

that is clear in the goal.

Learning Domain-Specific

Policies

Reactive Policy

??

? ?

Planning Domain
(problem distribution)

π : states × goals → actions

+

Random Walk
Bootstrapping

Approximate

Policy Iteration
Reactive Policy

Learner

[Fern et al. ICML03, NIPS03, ICAPS04]

Policy Iteration

Policy
Improvement

Control Policy

??

? ?

current policy π

Planning Domain

(problem distribution I)

improved policy π’

Approximate Policy Iteration

Draw trajectories of

improved policy π’

π’ Learn approximation

of π’Control Policy

??

? ?

current policy π

Planning Domain

(problem distribution I)

?

Drawing Trajectories from improved policy π’

??

? ?

Planning Domain

(problem distribution I)

?

?

(1) Draw some states E from I

(2) Compute π’ trajectories

… …
?

?

…

Computing π’ Trajectories from π

Given: current policy π and problem

Output: a trajectory under improved policy π’

?

?

s

Computing π’ Trajectories from π

Given: current policy π and problem

Output: a trajectory under improved policy π’

?

?

s

s …

…

…

…

…

Trajectories under π

a1

am

cost1

costn

…

Use heuristic
at these states

Computing π’ Trajectories from π

Given: current policy π and problem

Output: a trajectory under improved policy π’

?

?

s

s

Compute best action a (wrt to π’),
i.e., max over ^Q(s,ai)

s

Computing π’ Trajectories from π

Given: current policy π and problem

Output: a trajectory under improved policy π’

?

?

s

s

s’ sampled according to T(s,a)

Compute best action a (wrt to π’),
i.e., max over ^Q(s,ai)

s s’

Computing π’ Trajectories from π

Given: current policy π and problem

Output: a trajectory under improved policy π’

?

… …
?

s

… and so on …

s’

Computing π’ Trajectories from π

Given: current policy π and problem

Output: a trajectory under improved policy π’

?

… …
?

s

This way, we generate examples of state-action

pairs that are (approx.) sampled w.r.t. π’ because
they are (approx.) evaluated taking next “value
iteration” into account

s’

Policy Learning Algorithm

• Training data: generate π’ trajectories and save
state-action pairs <s1,A1>, <s2,A2>, <s3,A3>, etc.

• Use a Rivest-style decision-list learning
approach (induce one rule at a time, in order).
– While there are training instances remaining,

• Find a good rule

• Remove instances covered by the rule

– Similar to ReBeL’s maximization step

• Rules found by heuristically guided beam search
– heuristic combines consistency and coverage
– rules searched from small to large

Experiments

hEvaluate on the seven domains from

AIPS-2000 + TL-PLAN planning competition.

55 domains : can represent good policies

52 domains : can not represent good policies

hCompared against state-of-the-art planner FF

5FF’s heuristic is very good for most of these
domains.

hAPI equal or better FF’s performance when
we can represent policies.

Experimental Results
Blocks World (20 blocks)

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Iterations

P
e
rc

e
n

t
S

u
c
c
e
s
s

Blocks Elevator Schedule Briefcase Gripper

API 100 100 100 100 100

FF-Plan 28 100 100 0 100

Typically our solution lengths are comparable to FF’s.

Success Percentage

Domains with Good Policies

• Function Approximation

• Relational Value Function Learning

– Propositionalization

– Relational Regression

• Relational Policy Learning

– Approximate Policy Iteration

– Nonparametric Policy Gradient

Roadmap for RRL Policy Gradients with Function

Approximation (Sutton et al.)

• Parameterized policy:

• Gradient search w.r.t. world-value

∂ρ(θ)

∂θ
=

∂

∂θ
dπ (s)

s,a

∑ π (s,a,θ)Qπ (s,a)

= dπ (s)Qπ (s,a)
∂π (s,a,θ)

∂θ
s,a

∑

π (s,a,θ)

• Express policy using an arbitrary potential
function

• Use a Functional Gradient
(Friedmann)

π (s,a,Ψ) =
e

Ψ(s,a)

eΨ(s,b)

b

∑

∆Ψ ≈ α
∂ρ

∂Ψ

Non-Parametric Policy Gradient

[Kersting, Driessens ICML08]

Functional Gradient Boosting

• (inspired by Friedman et al. and Dietterich et al.)

• Regular Parameterized Gradients

• Functional Gradients

F(θ) → θm = θ0 + δ1 + δ2 + δ3 + ...+ δm

Ψ → Ψm = Ψ0 + ∆1 + ∆ 2 + ∆ 3 + ...+ ∆m

Functional Gradient Boosting (2)

SxA

∂ρ

∂Ψ

Ψ → Ψm = Ψ0 + ∆1 + ∆ 2 + ∆ 3 + ...+ ∆m

Infinitely many

parameters

Infinitely many

parameters

• Evaluate gradient locally

– Wherever there is data

• Use your favorite algorithm to generalize

– Propositional, relational, continuous

In Practice

• Following Sutton et al.

∂ρ

∂Ψ
=

∂

∂Ψ
dπ (s)

s,a

∑ π (s,a)Qπ (s,a)

= dπ (s)Qπ (s,a)
∂π (s,a)

∂Ψ
s,a

∑

sample compute
locally

π (s,a) =
eΨ(s,a)

e
Ψ(s,b)

b

∑

Local Evaluation

Simple: Monte-Carlo estimate

Future Work: actor-critic

∂π (s,a)

∂Ψ(s,a)
= π (s,a)(1− π (s,a))

∂π (s,a)

∂Ψ(s,b)
= −π (s,a)π (s,b)

Qπ (s,a)

ICML 2008 - Helsinki 192

Gradient Tree Boosting

1. Generate behavior traces following

2. For each encountered state s

For each available action in that state

Generate a learning example:

for chosen action a

for other actions b

3. Learn a tree:

4.

1. Generate behavior traces following

2. For each encountered state s

For each available action in that state

Generate a learning example:

for chosen action a

for other actions b

3. Learn a tree:

4.

< s,a,Q(s,a)π (s,a)(1− π (s,a)) >

< s,b,−Q(s,a)π (s,a)π (s,b) >

∆ n +1

Ψn +1 = Ψn + ∆ n +1

π (s,a,Ψ) =
e

Ψ(s,a)

eΨ(s,b)

b

∑

Some Results

i a b

d c

e

f

j

h

g

Conclusions: Inductive FO Planning

h Model-free RL algorithms solve MDPs without knowing
the transition model

h Relational RL algorithms attempt to exploit the relational
structure

5 Faster learning, policies generalize across object domains

h Can exploit relational regression and classification
methods for model-free RRL

5 Feature engineering

5 Relational regression trees (RRL-TG, NPPG)

5 Relational decision lists (API)

5 Nonparametric Policy Gradient

5 Unifies finite, continuous, and relational RL

