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External-Memory Graph Search 

Motivation: Recent Successes in Search 
Optimal solutions the RUBIK’S CUBE, the (n²−1)-PUZZLE, and 

the TOWERS-OF-HANOI problem, all with state spaces of about 
or more than a quintillion (a billion times a billion) states.  

When processing a million states per second, looking at all states 
corresponds to hundreds of thousands of years.  

Even with search heuristics, time and space remain crucial resources: 
in extreme cases, weeks of computation time, gigabytes of main 
memory and terabytes of hard disk space have been invested to 
solve search challenges. 

Recent Examples Disk-based Search 
RUBIK’S CUBE: 43,252,003,274,489,856,000 states,  

2007: By performing a breadth-first search over subsets of 
configurations, starting with the solved one, in 63 hours with 
the help of 128 processor cores and 7 terabytes of disk space 
it was shown that 26 moves suffice.  

Recent Examples of Disk-based Search 
With recent search enhancements, the average solution time for 

optimally solving the FIFTEEN-PUZZLE with over 10^13 states is 
about milliseconds, looking at thousands of states.  

The state space of the FIFTEEN-PUZZLE has been completely 
generated in 3 weeks using 1.4 terabytes of secondary memory.  

Tight bounds on the optimal solutions for the THIRTY-FIVE-
PUZZLE with over 10^41 states have been computed in more than 
one month total time using 16 gigabytes RAM and 3 terabytes hard 
disk.  



Recent Examples of Disk-based Search 
The 4-peg 30-disk TOWERS-OF-HANOI problem spans a state 

space of 430 = 1, 152, 921, 504, 606, 846, 976 states 
Optimally solved by integrating a significant number of research 

results consuming about 400 gigabytes hard disk space in 17 
days. 

Further Examples 

Largest state space: ~3 terabytes disk space, while using only 3.5 
gigabytes of RAM taking 20 days (parallel version on 4 processors 
with shared NFS hard disk took 8 days)  

Spin (model checker, ACM distinguished software award) 
Divine (state-of-the-art  parallel model checker) 
Uppaal-CORA (most widely used real-time model checker) 
STEAM (c/c++ program validation tool) 
Metric FF (best-known metric planner) 
IDDP (state-of-the-art optimal multi sequence alignment ) 
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Notations 
 G: Graph 
 V: Set of nodes of G 
 E: Set of edges of G 
 w: E IR: Weight function that assigns a cost to each edge.  
 δ: shortest path distance between two nodes. 
 Open list: Search frontier – waiting to be expanded. 
 Closed list: Expanded nodes.  



Heuristic Search – A* algorithm 

A heuristic estimate is used to guide the search.  
 E.g. Straight line distance from the current node to the goal in case of a graph 

with a geometric layout. 
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Comparison of Search Algorithms 

DFS BFS 

A* 

Greedy Search 

Heuristics 
Admissible Heuristics 
 Never over-estimates the optimal path.  

 Guarantees the optimal path when A* expands a 
goal node 

Consistent Heuristics 
 Never drops fasters than the edge weight.  
   Guarantees A* never re-opens a node, and is optimally efficient 

Divide-and-conquer frontier A*   
[Korf & Zhang AAAI-00] 

 Stores Open list, but not Closed list 
 Reconstructs solution using divide-and-conquer method 

Goal 

Frontier 



Breadth-first heuristic search            [Zhou & 
Hansen AIJ-06] 

   Breadth-first branch-and-bound is more memory-efficient than best-first 
search 

Best-first frontier Breadth-first frontier 

f(n) > U 

Divide-and-conquer beam search 
 Stores 3 layers for duplicate elimination and 1 “middle” layer for solution 

reconstruction 
 Uses beam width to limit size of a layer 

Goal Start Start beam
width 

Divide-and-conquer beam-stack search 
 Memory use bounded by 4 × beam width 

 Use beam stack to backtrack to a set of nodes 
 Allows much wider beam width, which reduces backtracking 

 Contains both breadth-first and depth-first  branch-and-bound search as 
special cases 

Iterative Broadening Breadth-First Branch-and-
Bound 
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Search frontier  
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Only pick best k% nodes for expansion. 



Enforced Hill-Climbing 
 Most successful planning algorithm 

h=3 

h=2 

h=1 

h=0 Goal 

BFS

Introduction to EM Algorithms 
 Von Neumann RAM Model 
 Virtual Memory 
 External-Memory Model 
 Basic I/O complexity analysis 

 External Scanning 
 External Sorting 

 Breadth-First Search 
 Graphs 

 Explicit Graphs 
 Implicit Graphs 

Von Neumann RAM Model? 

 Main assumptions:  
 Program and heap fit into the main memory.  
 CPU has a fast constant-time access to the memory contents.  

Program 

Void foo(){ 

    foobar(); 

} 

Heap 

CPU 

Virtual Memory Management Scheme 

 Address space is divided into memory pages.  
 A large virtual address space is mapped to a smaller physical 

address space.  
 If a required address is not in the main memory, a page-fault 

is triggered.  
  A memory page is moved back from RAM to the hard disk to make 

space,  
  The required page is loaded from hard disk to RAM.  



Virtual Memory 
+ works well when word processing, spreadsheet, etc. are used. 

− does not know any thing about the data accesses in an algorithm.  

 In the worst-case, can result in one page fault for every         state access! 

0x000…000 

0xFFF…FFF 

Virtual 
Address 
Space 

Memory 
Page 

7 I/Os 

EM better than IM Graph Search? 

Memory Hierarchy 

Latency times Typical capcity 

~2 ns 
Registers 
(x86_64) 

16 x 64 bits 

3.0 ns L1 Cache 64 KB 

17 ns L2 Cache 512 KB 

23 ns L3 Cache 2 – 4 MB 

86 ns RAM 4 GB 

4.2 ms  
Hard disk (7200 

rpm) 
600 GB 8.3 ms full 

rotation 

Working of a hard disk 
 Data is written on tracks in 

form of sectors.  
 While reading, armature is 

moved to the desired track.  
  Platter is rotated to bring the 

sector directly under the head. 
  A large block of data is read in 

one rotation.  



External Memory Model [Aggarwal and Vitter] 

M 

If the input size is very large, 
running time depends on the I/Os 
rather than on the number of 
instructions. 

Input of size N >> M 

B 

External Scanning 
 Given an input of size N, consecutively read B elements in the 

RAM. 

 I/O complexity:  

Input of  size N 

M 

B B B B B B 

External Sorting 

  I/O complexity:  

Unsorted disk file of size N 

Read M elements in chunks of B, sort internally and flush 

Read M/B sorted buffers and flush a merged and sorted sequence 

Read final M/B sorted buffers and flush a merged and sorted sequence 

Explicit vs. Implicit 

A path search problem in explicit graphs: 

Given a graph, does a path between two nodes I and T 
exist?   
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Reachability analysis in implicit graphs: 
Given an initial state(s) I and a set of transformation 

rules, is a desired state T reachable?  

Actions: 

U: up      D: down 

L: left      R: right 

1 3 2 

4 5 

6 7 8 

3 2 

1 4 5 

6 7 8 

U R
I 

1 2 

3 4 5 

6 7 8 T 

Traverse/Generate the graph until T is reached.  
Search Algorithms: DFS, BFS, Dijkstra, A*, etc.) 

What if the graph is too big to fit in the RAM? 
8-puzzle has 9!/2 states ... 15-puzzle has 16!/2 ≈  10 461 394 900 000 states 



External-Memory Graph Search 
 External BFS 
 Delayed Duplicate Detection 
 Locality 

 External A* 
 Bucket Data Structure 
 I/O Complexity Analysis  

External Breadth-First Search  
(Munagala and Ranade, SODA’99) 
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I/O Complexity Analysis of EM-BFS for Explicit 
Graphs 
 Expansion: 

 Sorting the adjacency lists: O(Sort(|V|))  
 Reading the adjacency list of all the nodes: O(|V|) 

 Duplicates Removal: 
 Phase I: External sorting followed by scannig.  O(Sort(|E|) + Scan(|

E|)) 
 Phase II: Subtraction of previous two layers: O(Scan(|E|) + Scan(|

V|)) 
 Total: O(|V| +Sort(|E| + |V|)) I/Os  

Delayed Duplicate Detection (Korf 2003) 

 Essentially idea of Munagala and Ranade applied to implicit graphs 
… 

 Complexity: 
 Phase I: External sorting followed by scannig.  O(Sort(|E|) + Scan(|

E|)) 
 Phase II: Subtraction of previous two layers: O(Scan(|E|) + Scan(|

V|)) 
 Total: O(Sort(|E|) + Scan (|V|)) I/Os  



Locality in Breadth-First Search 
1 2 3 4 1 2 3 4 
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BFS Layer 

Longest Back-edge: 
[Zhou & Hansen 05] 

Problems with A* Algorithm  
 A* needs to store all the states during exploration. 
 A* generates large amount of duplicates that can be removed using an 

internal hash table – only if it can fit in the main memory. 

 A* do not exhibit any locality of expansion. For large state spaces, 
standard virtual memory management can result in excessive page 
faults. 

Can we follow the strict order of expanding with respect to the 
minimum g+h value? - Without compromising the optimality? 

Data Structure: Bucket 
  A Bucket is a set of states, residing on the disk, having the same (g, h) value, where: 

 g = number of transitions needed to transform the initial state to the states of the 
bucket,  

  and h = Estimated distance of the bucket’s state to the goal 
  No state is inserted again in a bucket that is expanded. 

  If Active (being read or written), represented internally by a small buffer. 

File on disk 
Buffer in internal memory 

Insert states when full, sort and flush 

External A* (E., Jabbar and Schrödl 2004) based on Set A* (Jensen, Veloso, 
Bryant 2002) and BDDA* (Raffel, E., 1998) 

Simulates a priority queue by 
exploiting the properties 
of the heuristic function: 

  h is a total function!! 
  Consistent heuristic  
 estimates. 
⇒ ∆h ={-1,0,1,…}  
w’(u,v) = w(u,v) – h(u)       
              + h(v) 
=> w’(u,v) = 1  + {-1,0,1} 

0

1

2

3

4

0 1 h(I)=2 3 4 

de
pt

h 

heuristic 

I 

G 



External A* 

  Buckets represent temporal locality – 
cache efficient  order of expansion. 

  If we store the states in the same bucket 
together we can exploit the spatial 
locality. 

  Munagala and Ranade’s BFS and Korf’s 
delayed duplicate detection for implicit 
graphs. 

External A* 

Procedure External A* 
Bucket(0, h(I))  {I} 
fmin  h(I) 
while (fmin ≠ ∞) 
 g   min{i | Bucket(i, fmin − i) ≠ φ}  
 while (gmin ≤ fmin) 
  h  fmin − g 
  Bucket(g, h)   remove duplicates from Bucket(g, h) 
  Bucket(g, h)  Bucket(g, h) \  
                         (Bucket(g − 1, h) U Bucket(g − 2, h)) // Subtraction 
  A(fmin),A(fmin + 1),A(fmin + 2)  N(Bucket(g, h)) // Neighbours 
  Bucket(g + 1, h + 1)      A(fmin + 2) 
  Bucket(g + 1, h)            A(fmin + 1) U Bucket(g + 1, h) 
  Bucket(g + 1, h − 1)      A(fmin) U Bucket(g + 1, h − 1) 
   g  g + 1 
  fmin  min{i + j > fmin | Bucket(i, j) ≠ φ} U {∞} 

I/O Complexity Analysis 

  Internal A* => Each edge is looked at 
most once. 

 Duplicates Removal: 
 Sorting the green bucket having one 

state for every edge from the 3 red 
buckets. 

 Scanning and compaction. 
  O(sort(|E|)) Total I/O complexity: 

θ(sort(|E|) + scan(|V|)) I/Os 

Cache-Efficient at all levels!!! 

Complexity Analysis 
 Subtraction: 

 Removing states of blue buckets 
(duplicates free) from the green 
one. 
  O(scan(|V|) + scan(|E|)) 

Total I/O complexity: 

θ(sort(|E|) + scan(|V|)) I/Os 

Cache-Efficient at all levels!!! 



I/O Performance of External A* 

Theorem: The complexity of External A* in an implicit unweighted 
and undirected graph with a consistent heuristic estimate is 
bounded by  

O(sort(|E|) + scan(|V|)) I/Os. 

Test Run – Generated  states 

Test Run - Duplicates Exploiting Problem Graph Structure 
Hash-based Duplicate Detection 
 Basic principle  
Structured Duplicate Detection 

 Basic principles 
 Manual and automated abstraction 
 Edge partitioning 
 External memory pattern databases 



Hash-based Duplicate Detection 

1.  Hash cards by suit 
2.  Sort suit internally 

Essentials of hash-based DDD 
Two orthogonal hash functions one for external and one for internal 

duplicate elimination 
Read one file (partitioned by first hash) at a time into RAM, merge 

duplicates (using second hash) and flush file 

Examples:  
15-puzzle: one based on first row, one based on last three row  
Tower of Hanoi: one based on the largest discs, one based on the 

smallest discs  

Structured Duplicate Detection 
  Idea: localize memory references in duplicate detection by exploiting graph 

structure 
 Example: Fifteen-puzzle 
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State-space projection function 
 Many-to-one mapping from original state space to abstract state space 
 Created by ignoring some state variables 
 Example 

… 
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Abstract state-space graph 
•  Created by state-space projection function 
•  Example 

B0 B3 B1 B2 

B8 

B4 B5 B6 B7 

16 abstract states > 10 trillion states 
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Partition stored nodes 

   Open and Closed lists are partitioned into blocks of nodes, with one block 
for each abstract node in abstract state-space graph 

B0 B1 B2 B14 B15 

…… 

Logical memory 

…… 

Duplicate-detection scope  

   A set of blocks (of stored nodes) that is guaranteed to contain all 
stored successor nodes of the currently-expanding node 
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When is disk I/O needed? 
  If internal memory is full, write blocks outside current duplicate-detection 

scope to disk 
  If any blocks in current duplicate-detection scope are not in memory, read 

missing blocks from disk 



How to reduce disk I/O? 
   Given a set of nodes on search frontier, expand nodes in an order such that 

 Nodes in the same duplicate-detection scope are expanded together 
 Nodes in duplicate-detection scopes with overlapping abstract nodes, are 

expanded near each other 

Locality-preserving abstraction 

 Max. duplicate-detection scope ratio δ 

 Measures degree of graph local structure 
 ≈ % of nodes that must be stored in RAM  
 Smaller δ  Less RAM needed 

 Search for abstraction that minimizes δ 

Exploiting state constraints 
 XOR group: a group of atoms s.t. exactly one must be true at any time 

 Advantage: reduce size of abstract graph 
 Example: 2 XOR groups of 5 atoms each                size of abstract graph = 

 25+5 = 1024    without XOR constraints  
 5 X 5 = 25      with XOR constraints 

Y 
X 

Y 

(on X Y) (clear Y) XOR 

Greedy abstraction algorithm 
 Starts with empty set of abstraction atoms 
 Mark all XOR groups as unselected 
 While ( size of abstract graph ≤ M ) 

 Find an unselected XOR group Pi s.t. union of abstraction 
atoms and Pi creates abstract graph with minimum δ 

 Add Pi into set of abstraction atoms 
 Mark Pi as selected 



Example: Logistics Abstraction based on truck locations 

Largest duplicate-detection scope based on locations 
of 2 packages Operator grouping 

 Exploits structure in operator space  
 Divides operators into operator groups for each abstract state 
 Operators belong to the same group if they 

  are applicable to the same abstract state 
  lead to the same successor abstract state 



Example 
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Edge Partitioning 
   Reduces duplicate-detection scope to one block of stored nodes – 

Guaranteed! 
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External-memory pattern database 
 Creating an external-memory PDB 

 Breadth-first search in pattern space using delayed or structured duplicate 
detection 

 Two ways of using an external-memory PDB 
 Compress PDB to fit in RAM 
 Use structured duplicate detection to localize references to PDB, so only a 

small fraction of PDB needs to be stored in RAM at a time 

Compatible state-space abstraction 
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Parallel External-Memory Graph Search 
 Motivation Shared and Distributed Environments 
 Parallel Delayed Duplicate Detection 

 Parallel Expansion 
 Distributed Sorting 

 Parallel Structured Duplicate Detection 
 Finding Disjoint Duplicate Detection Scopes 
 Locking 

Motivation 

Parallel and External Memory Graph Search Synergies: 
 They need partitioned access to large sets of data 
 This data needs to be processed individually. 

 Limited information transfer between two partitions 
 Streaming in external memory programs relates to Communication 

Queues in distributed programs 
    (as communication often realized on files) 
 Good external implementations often lead to good parallel 

implementations 

 Parallel Shared Memory Graph Search 

    Single-core CPU                   Multi-core CPU 

•  Parallelization is important for multi-core CPUs 
•  But parallelizing graph-search algorithms such as breadth-first 

search, Dijkstra’s algorithm, and A* is challenging 
•  Issues: Load balancing, Locking, and most importantly … 

External-Memory Graph Search 68 

•  Same bottleneck in external-memory search 

Bottleneck: Duplicate detection 
 Duplicate paths cause parallelization overhead 
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C D D D D 

Internal memory External memory 
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Distributed Search over the Network 

 Distributed setting provides more space.  
 Experiments show that internal time dominates I/O. 

Exploiting Independence 
 Since each state in a Bucket is 

independent of the other –   
    they can be expanded in 

parallel. 
 Duplicates removal can be 

distributed on different 
processors. 

 Bulk (Streamed) transfers 
much better than single ones. 

Parallel Breadth-First Frontier Search Enumerating 
15-Puzzle (Korf and Schultze 2006) 

 Hash function partitions both layers into files.  
  If a layer is done, children files are renamed into parent files.  
  For parallel processing a work queue contains parent files waiting to be 

expanded, and child files waiting to be merged 

Distributed Queue for Parallel Best-First Search 
(Jabbar and E. 2006) 

P0 

P1 

P2 

<15,34, 0, 100> 

<g, h, start byte, size> 

<15,34, 20, 100> 
TOP 

<15,34, 40, 100> 

<15,34, 60, 100> 



Distributed Delayed Duplicate Detection 
 Each state can appear several times in a bucket. 
 A bucket has to be searched completely for the duplicates. 

P0 P1 P2 P3 

GOAL 

Problem: Concurrent Writes !!!! 

Sorted buffers 
Single Files 

Multiple Processors - Multiple Disks Variant 

Sorted 
buffers w.r.t 
the hash val 

Sorted Files 

P1 P2 P3 P4 

Divide w.r.t 
the hash 
ranges 

Sorted 
buffers from 
every 
processor 

Sorted File 

h0 ….. hk-1  hk ….. hl-1  
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Distributed Heuristic Evaluation (E., Jabbar, 
Kissmann 2008) 

 Assume one child processor for each tile one master processor  
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Distributed Heuristic Evaluation 



Distributed Pattern Database Search 
 Only pattern databases that include the client tile need to be 

loaded on the client 
 Because multiple tiles in pattern, the PDB is loaded on multiple 

machines 
  In 15-Puzzle with corner and fringe PDB this saves RAM in the 

order of factor 2 on each machine, compared to loading all  
  In 36-Puzzle with 6-tile pattern databases this saves RAM in the 

order of factor 6 on each machine, compared to loading all  
 Extends to additive pattern databases 

Disjoint duplicate-detection scopes  
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Finding disjoint duplicate-detection scopes 
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Implementation of Parallel SDD 
 Hierarchical organization of hash tables 

 One hash table for each abstract node 
 Top-level hash func. = state-space projection func. 

 Shared-memory management 
 Minimum memory-allocation size m 
 Memory wasted is bounded by O(m•#processors) 

 External-memory version 
 I/O-efficient order of node expansions 
 I/O-efficient replacement strategy 

Only needs a single mutex lock  
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System Verification 
 Need for Verification of System  
  (Automata-based) Model Checking 
 Safety and Liveness 

 External LTL Model Checking 
 Alternative Approaches 

Motivation 
 Software MUST be correct! 

Ariane-5 rocket destruction 

Cost: €500 Million 

Cause: over-flow while converting 
64-bit to 16-bit integer 

Failed interception of  Scud by Patriot 
missile  

Cost: 28 dead 100 injured 

Cause: precision lost in using 24-bit 
registers while calculating                              
1/10 x elapsed time. 

Model Checking 
  Given  

 A model of a system. 
 A specification property 

  Model Checking Problem: Does the 
system satisfy the property ? 

  An exhausting exploration of the state 
space. 

  Problem: How to cope with large state 
spaces that do not fit into the main 
memory? 

  In Practice: successes in finding bugs. 

search 

specification 

state rep. 

modeling 
language 

A Typical Model Checker 

Abstraction 

A Model Checking Example 

Eichlinghofen Campus Nord 

(S) 

Tech. Park 

Campus Sued 

Safety property: Cabin-2 will never go to green-track  

Liveness property: Cabin-1 will eventually come to 
Tech. Park after leaving Eichlinghofen.  

Prog Cabin-1 control{ 
  If (track-1 is empty) 
    Take track-1; 
  Go forward; 
  Leave track-1; 
} 

Prog Cabin-2 control{ 
  If (track-2 is empty) 
    Take track-2; 
  Go forward; 
  Leave track-2; 
} 

Cab-2 Cab-1 

track-1 

track-3 



Automata-based Model Checking 

  Explore all the reachable combinations of the 
system.  

  Search for the state where a property is NOT 
satisfied.  

  Return a counter-example. 
  Problem: 100 tracks and 10 cabins – Cabin-1 

can be at 100 tracks, Cabin-2 at 99 tracks    ≈ 1 
731 030 950 000  states 

Cabin-1 at Eich; Cabin-2 at Sued 

Cabin-1 at track-1; Cabin-2 at Sued Cabin-1 at Eich; Cabin-2 at track-2 

Cabin-1 at track-1; Cabin-2 at track-2 Cabin-1 at Sued; Cabin-2 at Sued 

Cabin-1 at track-2; Cabin-2 at track-3 

Liveness Property 
  Product of Automata for System and for the Property  

  Search for a path that visits an accepting state infinitely often. 

 Nested Depth-first search look for a state that is already residing on the 
stack. 

Accepting State 

Head of  Lasso 

Initial State 

DFS does not show any locality of  reference  => Not Suitable for External Search! 

Liveness as Safety (Schuppan and Biere, 2005) 
  Explicitly unroll the lasso. 

  Search for the head again. 

Accepting State 

Head of Lasso 

Initial State 

Head of Lasso 

Heuristic Search for Liveness as Safety 
 (Jabbar & E., 2006) 

  Stage 1: For a state (s,s,0), perform a directed search for an accepting 
state s’ in the never-claim. 

 When found 
 Spawn two children: 

  (s, s, 1): Head of lasso found! 
  (s, s, 0): Head of lasso not found! 

  Stage 2: For a state (s, s’, 1), perform a directed search for s’. 

s might not form a 
cycle! – So keep 

searching! 



Heuristic for the 1st stage – Head of the Lasso 
  We want to reach an accepting state in the never-claim faster! 

Model 

Never-claim 

HN = min{δ(c,a1), δ(c,a2), δ(c,a3) } 

c a1 

a2 

a3 
δ is the shortest path distance 
between two states and can be pre-
computed. 

Heuristics for the 2nd stage – Close the Lasso 
  We want to reach a particular state (in red) in both the model and the never-claim from my current 

state (in blue). 

Model 

Never-claim 

H = max{HN, HM } 

c a1 

a2 

a3 

External Directed LTL Model Checking 
(E., Jabbar 2006) 

Arrives at the 
final state 

Arrives again at 
the same final 

state 

Same states in 
both parts 

Current 
state 

Already seen 
final state 

Large jumps due 
to 2nd heuristic 

I/Os of External A* for Liveness 
External memory algorithms are evaluated on the 

number of I/Os.  
 Expansion: Linear I/O O(Scan(|V| x |F|)) 
 Delayed Duplicate Detection:  

 Removing duplicates from the same buffer:  
 O(sort(|E| x |F|)) 
 Subtracting previous levels: O(l x Scan(|V| x |F|));   where l is locality. 

I/O Complexity = O(sort(|E|x|F|) + l x Scan(|V|x|F|))  



Alternative Approaces:  
Mini-States (E. et al. 2006) 

  Keep pointer to a state in RAM or on Disk 

  Keep pointer to the predecessor mini state 

  constant size 

                     Disk RAM 

 Expanding a State 

Mini States Secondary Memory Cache 

Internal Memory 

 Flushing the Cache 

Mini States Secondary Memory Cache 

Internal Memory 

Alternative Approaches 
 Dill et al. (1996) – Cache like mechanism to flush states.    
 Kristensen and Mailund (2003) – Sweep line algorithm. Saves the closed 

list on disk in form of a spanning tree.  
 Hammer and Weber (2006) – Hash-based partitioning of the state space. 

Utilizes compression and Bloom filters. 
 Bao and Jones (2005) – Hash-based partitioning with each partition 

fitting into main memory.  
 Barnat, Brim, Simecek (2007/08) Alternatives for  External LTL – using 

STXXL 
 Lamborn and Hansen (2008) - Layered Duplicate Detection 
 Evangilista (2008) - Dynamic Delayed Duplicate Detection 



Advanced Topics 
 External Value Iteration 
 Semi-External-Memory Graph Search 

 (Minimal) Perfect Hash Functions 
 c-bit Semi-Externality 

 Flash Memory (Solid State Disk) 
 Immediate Duplicate Detection 
 Hashing with Fore- and Background Memory 

Markov Decision Processes 

I 

u1 

u2 

u3 

a; c(a) = 2; p=9/10 

Given: Finite State-Transition System 

h=3 

h=0 

h=6 

Probabilistic + Non-deterministic 

Find: Optimal h-value assignment 

h=1 

Action a: 2 + 1/10 x 3 + 9/10 x 0 = 2.3 

h=2.3 

            c: 10 + 1 x 6 = 16 

            b: 4 + 1 x 0 = 4  

Uniform Search Model: 
Deterministic 

Non-Deterministic 

Probabilistic 

Internal Memory Value Iteration 
ε-Optimal  for solving 
MDPs, AND/OR 
trees… 

Problem: 
Needs to have the whole 
state space in the main 
memory.   



External-Memory Algorithm for Value Iteration  

 What makes value iteration different from the usual external-memory 
search algorithms? 

 Answer: 
 Propagation of information from states to predecessors! 

 Edges are more important than the states. 

Ext-VI works on Edges:  

External Memory Value Iteration 
  Phase I: Generate the edge space by External BFS. 
  Open(0) = Init; i = -1 

  while (Open(i-1) != empty) 
  Open(i) = Succ(Open(i-1)) 
  Externally-Sort-and-Remove-Duplicates(Open(i)) 
  for loc =  1 to Locality(Graph) 

  Open(i) = Open(i) \ Open(i - loc)  

   i++ 

  endwhile 

Merge all BFS layers into one edge list on disk! 
Opent  = Open(0) U Open(1) U … U Open(DIAM) 
Temp = Opent  
Sort Opent wrt. the successors; Sort Temp wrt. the predecessors 

Remove previous layers 

Working of Ext-VI 
Phase-II 

{(Ø, 1), (1,2), (1,3), (1,4), (2,3), (2,5), (3,4), (3,8), (4,6), (5,6), (5,7), (6,9), (7,8), (7,10), (9,8), (9,10)} 

{(Ø,1), (1,2), (1,3), (2,3), (1,4), (3,4), (2,5), (4,6), (5,6), (5,7), (3,8), (7,8), (9,8), (6,9), (7,10), (9,10)} 
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Temp : Edge List on Disk – Sorted on Predecessors 

Opent : Edge List on Disk – Sorted on Successors 

h= 

h= 

h’= 

Alternate sorting and update until residual < epsilon 

Complexity Analysis 
  Phase-I: External Memory Breadth-First 

Search. 

  Expansion: 
  Scanning the red bucket: O(scan(|E|)) 

  Duplicates Removal: 
  Sorting the green bucket having one state for every edge 

from the red bucket. 
  Scanning and compaction: O(sort(|E|)) 

  Subtraction: 
  Removing states of blue buckets (duplicates free) from the 

green one:       O(l x scan(|E|)) 
Complexity of  Phase-I: 

O(l x scan(|E|) + sort(|E|) )  I/Os 

…
…
…



Complexity Analysis 
  Phase-II: Backward Update 
 Update: 

 Simple block-wise scanning.  
 Scanning time for red and green files: 

O(scan(|E|)) I/Os 

  External Sort: 
 Sorting the blue file with the updated 

values to be used as red file later: O(sort(|
E|)) I/Os 

Total Complexity of  Phase-II:               

For tmax iterations,  

O(tmax x sort(|E|))  I/Os 

Sorted on preds 

Sorted on states 

Updated h-values 

……… 

Semi-External EM Search[E., Sanders, Simecek 2008] 
 generate state space with external BFS 
  construct perfect hash function (MPHF) from disk 
 use bit-state hash table Visited[h(u)] in RAM and stack on disk to perform 

cycle detection DFS 
 I/Os for Ex-BFS + const. scans and sorts  
Optimal counter-examples: 
 I/Os for Ex-BFS + |F| scans 
On-the-fly by iterative deepening (bounded MC) 
 I/Os for Ex-BFS + max-BFS-depth  scans 

Semi-Externality 
Graph search algorithm A is c-bit semi-external if for each implicit 

graph G = (V,E) RAM requirements are at most O(vmax) + c·|
V| bits. 

O(vmax) covers the RAM needed for program code, auxiliary 
variables, and storage of a constant amount of vertices. 

Lower bound  
        log log|U|+(log|E|)|V|+O(log|V|) bits 

Reduction in Practice 



Flash-Memory Graph Search  
[E., Sulewski, 2008, Barnat, Brim, E., Simecek, Sulewski 2008] 

 Solid State Disk operate as trade-off between RAM and Hard Disk 
 On NAND technology, random reads are fast, random writes are 

slow 

 With refined hashing, immediate duplicate detection becomes 
feasible for external memory graph search (CPU usage > 70%)  

 Beats DDD in large search depth …. 

Compression Strategy 

Conclusion 

 Disk-based algorithms with I/O complexity analysis.  
 Can pause-and-resume execution to add more hard disks.  

 Error trace:  
 No predecessor pointers! 
 Save the predecessor with each state.  
 Trace back from the goal state to the start state breadth-wise. 

 Disk space eaten by duplicate states: 
 Start “Early” Delayed Duplicate Detection  

Applications & Future Extensions 
Applications: 
 Sequence Alignment Problem  
 Parallel External C++ Model Checking 

In Implementation: 
 Partial-Order Reduction  
 Pipelined I/Os – keep block in the memory as long as possible 


