
18th International Conference on Automated Planning and Scheduling
September 14-18. 2008 Sydney, Australia

ICAPS-08 Tutorial on

External-Memory Graph Search

Organizers

Stefan Edelkamp, Technical University of Dortmund (Germany)
Eric Hansen, Mississipi State University (USA)
Shahid Jabbar, Technical University of Dortmund (Germany)
Rong Zhou, Palo Alto Research Center (USA)

Stefan Edelkamp (Technical University of Dortmund, Germany)
Eric Hansen (Mississippi State University)

Shahid Jabbar (Technical University of Dortmund, Germany)
Rong Zhou (Palo Alto Research Center)

External-Memory Graph Search

Motivation: Recent Successes in Search
Optimal solutions the RUBIK’S CUBE, the (n²−1)-PUZZLE, and

the TOWERS-OF-HANOI problem, all with state spaces of about
or more than a quintillion (a billion times a billion) states.

When processing a million states per second, looking at all states
corresponds to hundreds of thousands of years.

Even with search heuristics, time and space remain crucial resources:
in extreme cases, weeks of computation time, gigabytes of main
memory and terabytes of hard disk space have been invested to
solve search challenges.

Recent Examples Disk-based Search
RUBIK’S CUBE: 43,252,003,274,489,856,000 states,

2007: By performing a breadth-first search over subsets of
configurations, starting with the solved one, in 63 hours with
the help of 128 processor cores and 7 terabytes of disk space
it was shown that 26 moves suffice.

Recent Examples of Disk-based Search
With recent search enhancements, the average solution time for

optimally solving the FIFTEEN-PUZZLE with over 10^13 states is
about milliseconds, looking at thousands of states.

The state space of the FIFTEEN-PUZZLE has been completely
generated in 3 weeks using 1.4 terabytes of secondary memory.

Tight bounds on the optimal solutions for the THIRTY-FIVE-
PUZZLE with over 10^41 states have been computed in more than
one month total time using 16 gigabytes RAM and 3 terabytes hard
disk.

Recent Examples of Disk-based Search
The 4-peg 30-disk TOWERS-OF-HANOI problem spans a state

space of 430 = 1, 152, 921, 504, 606, 846, 976 states
Optimally solved by integrating a significant number of research

results consuming about 400 gigabytes hard disk space in 17
days.

Further Examples

Largest state space: ~3 terabytes disk space, while using only 3.5
gigabytes of RAM taking 20 days (parallel version on 4 processors
with shared NFS hard disk took 8 days)

Spin (model checker, ACM distinguished software award)
Divine (state-of-the-art parallel model checker)
Uppaal-CORA (most widely used real-time model checker)
STEAM (c/c++ program validation tool)
Metric FF (best-known metric planner)
IDDP (state-of-the-art optimal multi sequence alignment)

Outline
I. Review of basic graph-search techniques

  limited-memory graph search
  including frontier search

II. Introduction to External-Memory Algorithms and I/O
Complexity Analysis

III. External-Memory Search Algorithms
IV. Exploiting Problem Graph Structure
V. Parallel External-Memory Graph Search
VI. Applications: Model Checking
VII. Advanced Topics: Probabilistic, Semi-Externality Flash-

Memory, etc.

Notations
 G: Graph
 V: Set of nodes of G
 E: Set of edges of G
 w: E IR: Weight function that assigns a cost to each edge.
 δ: shortest path distance between two nodes.
 Open list: Search frontier – waiting to be expanded.
 Closed list: Expanded nodes.

Heuristic Search – A* algorithm

A heuristic estimate is used to guide the search.
 E.g. Straight line distance from the current node to the goal in case of a graph

with a geometric layout.

s

g

s

g

A*

Breadth-First
Search

Comparison of Search Algorithms

DFS BFS

A*

Greedy Search

Heuristics
Admissible Heuristics
 Never over-estimates the optimal path.

 Guarantees the optimal path when A* expands a
goal node

Consistent Heuristics
 Never drops fasters than the edge weight.
 Guarantees A* never re-opens a node, and is optimally efficient

Divide-and-conquer frontier A*
[Korf & Zhang AAAI-00]

 Stores Open list, but not Closed list
 Reconstructs solution using divide-and-conquer method

Goal

Frontier

Breadth-first heuristic search [Zhou &
Hansen AIJ-06]

 Breadth-first branch-and-bound is more memory-efficient than best-first
search

Best-first frontier Breadth-first frontier

f(n) > U

Divide-and-conquer beam search
 Stores 3 layers for duplicate elimination and 1 “middle” layer for solution

reconstruction
 Uses beam width to limit size of a layer

Goal Start Start beam
width

Divide-and-conquer beam-stack search
 Memory use bounded by 4 × beam width

 Use beam stack to backtrack to a set of nodes
 Allows much wider beam width, which reduces backtracking

 Contains both breadth-first and depth-first branch-and-bound search as
special cases

Iterative Broadening Breadth-First Branch-and-
Bound

c
os
t

Search frontier

k=20%

40%

60%

80%

100%

Only pick best k% nodes for expansion.

Enforced Hill-Climbing
 Most successful planning algorithm

h=3

h=2

h=1

h=0 Goal

BFS

Introduction to EM Algorithms
 Von Neumann RAM Model
 Virtual Memory
 External-Memory Model
 Basic I/O complexity analysis

 External Scanning
 External Sorting

 Breadth-First Search
 Graphs

 Explicit Graphs
 Implicit Graphs

Von Neumann RAM Model?

 Main assumptions:
 Program and heap fit into the main memory.
 CPU has a fast constant-time access to the memory contents.

Program

Void foo(){

 foobar();

}

Heap

CPU

Virtual Memory Management Scheme

 Address space is divided into memory pages.
 A large virtual address space is mapped to a smaller physical

address space.
 If a required address is not in the main memory, a page-fault

is triggered.
  A memory page is moved back from RAM to the hard disk to make

space,
  The required page is loaded from hard disk to RAM.

Virtual Memory
+ works well when word processing, spreadsheet, etc. are used.

− does not know any thing about the data accesses in an algorithm.

 In the worst-case, can result in one page fault for every state access!

0x000…000

0xFFF…FFF

Virtual
Address
Space

Memory
Page

7 I/Os

EM better than IM Graph Search?

Memory Hierarchy

Latency times Typical capcity

~2 ns
Registers
(x86_64)

16 x 64 bits

3.0 ns L1 Cache 64 KB

17 ns L2 Cache 512 KB

23 ns L3 Cache 2 – 4 MB

86 ns RAM 4 GB

4.2 ms
Hard disk (7200

rpm)
600 GB 8.3 ms full

rotation

Working of a hard disk
 Data is written on tracks in

form of sectors.
 While reading, armature is

moved to the desired track.
  Platter is rotated to bring the

sector directly under the head.
  A large block of data is read in

one rotation.

External Memory Model [Aggarwal and Vitter]

M

If the input size is very large,
running time depends on the I/Os
rather than on the number of
instructions.

Input of size N >> M

B

External Scanning
 Given an input of size N, consecutively read B elements in the

RAM.

 I/O complexity:

Input of size N

M

B B B B B B

External Sorting

  I/O complexity:

Unsorted disk file of size N

Read M elements in chunks of B, sort internally and flush

Read M/B sorted buffers and flush a merged and sorted sequence

Read final M/B sorted buffers and flush a merged and sorted sequence

Explicit vs. Implicit

A path search problem in explicit graphs:

Given a graph, does a path between two nodes I and T
exist?

3 2

1 4 5

6 7 8

1

2

3

4

7

8

9

5

6

10 I T

Reachability analysis in implicit graphs:
Given an initial state(s) I and a set of transformation

rules, is a desired state T reachable?

Actions:

U: up D: down

L: left R: right

1 3 2

4 5

6 7 8

3 2

1 4 5

6 7 8

U R
I

1 2

3 4 5

6 7 8 T

Traverse/Generate the graph until T is reached.
Search Algorithms: DFS, BFS, Dijkstra, A*, etc.)

What if the graph is too big to fit in the RAM?
8-puzzle has 9!/2 states ... 15-puzzle has 16!/2 ≈ 10 461 394 900 000 states

External-Memory Graph Search
 External BFS
 Delayed Duplicate Detection
 Locality

 External A*
 Bucket Data Structure
 I/O Complexity Analysis

External Breadth-First Search
(Munagala and Ranade, SODA’99)

A

D

C

B

E

A

Open (0)

A

A

D

D

E

A

D

E

D

E

Open (2)

B

C

Open (1)

D

A

A

D

E

I/O Complexity Analysis of EM-BFS for Explicit
Graphs
 Expansion:

 Sorting the adjacency lists: O(Sort(|V|))
 Reading the adjacency list of all the nodes: O(|V|)

 Duplicates Removal:
 Phase I: External sorting followed by scannig. O(Sort(|E|) + Scan(|

E|))
 Phase II: Subtraction of previous two layers: O(Scan(|E|) + Scan(|

V|))
 Total: O(|V| +Sort(|E| + |V|)) I/Os

Delayed Duplicate Detection (Korf 2003)

 Essentially idea of Munagala and Ranade applied to implicit graphs
…

 Complexity:
 Phase I: External sorting followed by scannig. O(Sort(|E|) + Scan(|

E|))
 Phase II: Subtraction of previous two layers: O(Scan(|E|) + Scan(|

V|))
 Total: O(Sort(|E|) + Scan (|V|)) I/Os

Locality in Breadth-First Search
1 2 3 4 1 2 3 4

{1}

{2,4}

[1,3,2,4]{3}

{4}

{1}

{2}

{3}

{4}

{1}

Layer-0

Undirected Graph Directed Graph

Layer-1

Layer-2

Layer-4

Layer-5

BFS Layer

Longest Back-edge:
[Zhou & Hansen 05]

Problems with A* Algorithm
 A* needs to store all the states during exploration.
 A* generates large amount of duplicates that can be removed using an

internal hash table – only if it can fit in the main memory.

 A* do not exhibit any locality of expansion. For large state spaces,
standard virtual memory management can result in excessive page
faults.

Can we follow the strict order of expanding with respect to the
minimum g+h value? - Without compromising the optimality?

Data Structure: Bucket
  A Bucket is a set of states, residing on the disk, having the same (g, h) value, where:

 g = number of transitions needed to transform the initial state to the states of the
bucket,

  and h = Estimated distance of the bucket’s state to the goal
  No state is inserted again in a bucket that is expanded.

  If Active (being read or written), represented internally by a small buffer.

File on disk
Buffer in internal memory

Insert states when full, sort and flush

External A* (E., Jabbar and Schrödl 2004) based on Set A* (Jensen, Veloso,
Bryant 2002) and BDDA* (Raffel, E., 1998)

Simulates a priority queue by
exploiting the properties
of the heuristic function:

  h is a total function!!
  Consistent heuristic
 estimates.
⇒ ∆h ={-1,0,1,…}
w’(u,v) = w(u,v) – h(u)
 + h(v)
=> w’(u,v) = 1 + {-1,0,1}

0

1

2

3

4

0 1 h(I)=2 3 4

de
pt

h

heuristic

I

G

External A*

  Buckets represent temporal locality –
cache efficient order of expansion.

  If we store the states in the same bucket
together we can exploit the spatial
locality.

  Munagala and Ranade’s BFS and Korf’s
delayed duplicate detection for implicit
graphs.

External A*

Procedure External A*
Bucket(0, h(I)) {I}
fmin h(I)
while (fmin ≠ ∞)
 g min{i | Bucket(i, fmin − i) ≠ φ}
 while (gmin ≤ fmin)
 h fmin − g
 Bucket(g, h) remove duplicates from Bucket(g, h)
 Bucket(g, h) Bucket(g, h) \
 (Bucket(g − 1, h) U Bucket(g − 2, h)) // Subtraction
 A(fmin),A(fmin + 1),A(fmin + 2) N(Bucket(g, h)) // Neighbours
 Bucket(g + 1, h + 1) A(fmin + 2)
 Bucket(g + 1, h) A(fmin + 1) U Bucket(g + 1, h)
 Bucket(g + 1, h − 1) A(fmin) U Bucket(g + 1, h − 1)
 g g + 1
 fmin min{i + j > fmin | Bucket(i, j) ≠ φ} U {∞}

I/O Complexity Analysis

  Internal A* => Each edge is looked at
most once.

 Duplicates Removal:
 Sorting the green bucket having one

state for every edge from the 3 red
buckets.

 Scanning and compaction.
  O(sort(|E|)) Total I/O complexity:

θ(sort(|E|) + scan(|V|)) I/Os

Cache-Efficient at all levels!!!

Complexity Analysis
 Subtraction:

 Removing states of blue buckets
(duplicates free) from the green
one.
  O(scan(|V|) + scan(|E|))

Total I/O complexity:

θ(sort(|E|) + scan(|V|)) I/Os

Cache-Efficient at all levels!!!

I/O Performance of External A*

Theorem: The complexity of External A* in an implicit unweighted
and undirected graph with a consistent heuristic estimate is
bounded by

O(sort(|E|) + scan(|V|)) I/Os.

Test Run – Generated states

Test Run - Duplicates Exploiting Problem Graph Structure
Hash-based Duplicate Detection
 Basic principle
Structured Duplicate Detection

 Basic principles
 Manual and automated abstraction
 Edge partitioning
 External memory pattern databases

Hash-based Duplicate Detection

1.  Hash cards by suit
2.  Sort suit internally

Essentials of hash-based DDD
Two orthogonal hash functions one for external and one for internal

duplicate elimination
Read one file (partitioned by first hash) at a time into RAM, merge

duplicates (using second hash) and flush file

Examples:
15-puzzle: one based on first row, one based on last three row
Tower of Hanoi: one based on the largest discs, one based on the

smallest discs

Structured Duplicate Detection
  Idea: localize memory references in duplicate detection by exploiting graph

structure
 Example: Fifteen-puzzle

3 1

4 6 5

2

8

7 ?

9 10 11

12 13 14 15

3 1

4 6 5

2

8

7

9 10 11

12 13 14 15

3 1 4

6 5

2

8

7

9 10 11

12 13 14 15

3 2

4 6 5

1

8

7

9 10 11

12 13 14 15

? ?

? ? ?

?

?

?

? ? ?

? ? ? ?

State-space projection function
 Many-to-one mapping from original state space to abstract state space
 Created by ignoring some state variables
 Example

…

0 1 15 blank pos. =

? ?
? ? ?

?

?
?

? ? ?
? ? ? ?

? ?
? ? ?
?

?
?

? ? ?
? ? ? ?

? ?
? ? ?

?

?
?

? ? ?
? ? ?

?

…

Abstract state-space graph
•  Created by state-space projection function
•  Example

B0 B3 B1 B2

B8

B4 B5 B6 B7

16 abstract states > 10 trillion states

3 1

4 6 5

2

8

7

9 10 11

12 13 14 15

B9 B10 B11

B12 B13 B14 B15

Partition stored nodes

 Open and Closed lists are partitioned into blocks of nodes, with one block
for each abstract node in abstract state-space graph

B0 B1 B2 B14 B15

……

Logical memory

……

Duplicate-detection scope

 A set of blocks (of stored nodes) that is guaranteed to contain all
stored successor nodes of the currently-expanding node

B1 B0 B4

B0 B3 B1 B2

B8

B4 B5 B6 B7

B9 B10 B11

B12 B13 B14 B15

B0 B1

B4

B3 B2

B8

B5 B6 B7

B9 B10 B11

B12 B13 B14 B15

B2 B3 B5

B6 B7 B8

B15 B14
…

When is disk I/O needed?
  If internal memory is full, write blocks outside current duplicate-detection

scope to disk
  If any blocks in current duplicate-detection scope are not in memory, read

missing blocks from disk

How to reduce disk I/O?
 Given a set of nodes on search frontier, expand nodes in an order such that

 Nodes in the same duplicate-detection scope are expanded together
 Nodes in duplicate-detection scopes with overlapping abstract nodes, are

expanded near each other

Locality-preserving abstraction

 Max. duplicate-detection scope ratio δ

 Measures degree of graph local structure
 ≈ % of nodes that must be stored in RAM
 Smaller δ Less RAM needed

 Search for abstraction that minimizes δ

Exploiting state constraints
 XOR group: a group of atoms s.t. exactly one must be true at any time

 Advantage: reduce size of abstract graph
 Example: 2 XOR groups of 5 atoms each size of abstract graph =

 25+5 = 1024 without XOR constraints
 5 X 5 = 25 with XOR constraints

Y
X

Y

(on X Y) (clear Y) XOR

Greedy abstraction algorithm
 Starts with empty set of abstraction atoms
 Mark all XOR groups as unselected
 While (size of abstract graph ≤ M)

 Find an unselected XOR group Pi s.t. union of abstraction
atoms and Pi creates abstract graph with minimum δ

 Add Pi into set of abstraction atoms
 Mark Pi as selected

Example: Logistics Abstraction based on truck locations

Largest duplicate-detection scope based on locations
of 2 packages Operator grouping

 Exploits structure in operator space
 Divides operators into operator groups for each abstract state
 Operators belong to the same group if they

  are applicable to the same abstract state
  lead to the same successor abstract state

Example

B0 B3 B1 B2

B8

B4
B5 B6 B7

B9 B10 B11

B12 B13 B14 B15

B0 B1

B4

? ? ? ?
? ? ? ?

? ? ? ?
? ? ?

? ? ? ?
? ? ? ?

? ? ? ?
? ? ?

Operator group A

? ? ? ?
? ? ? ?

? ? ? ?
? ? ?

? ? ? ?
? ? ? ?

 ? ? ?
? ? ? ?

O
pe

ra
to

r g
ro

up
 B

Edge Partitioning
 Reduces duplicate-detection scope to one block of stored nodes –

Guaranteed!

B1

B0 B3 B1 B2

B8

B4 B5 B6 B7

B9 B10 B11

B12 B13 B14 B15

B1 B0 B3 B2

B8

B5 B6 B7

B9 B10 B11

B12 B13 B14 B15

B4

B2 B3 B5

B6 B7 B8

B15 B14

B0 B4

…

B3 B2

B8

B5 B6 B7

B9 B10 B11

B12 B13 B14 B15

B4

B1 B0

B4

B1

B4

External-memory pattern database
 Creating an external-memory PDB

 Breadth-first search in pattern space using delayed or structured duplicate
detection

 Two ways of using an external-memory PDB
 Compress PDB to fit in RAM
 Use structured duplicate detection to localize references to PDB, so only a

small fraction of PDB needs to be stored in RAM at a time

Compatible state-space abstraction

Original
state space

Abstract
state space

Pattern
space

Abstract
pattern space

1
4 6 5

2

8
7

9 11
15 12 13

10
 14

3

?
4 ? ?

2

?
?

? ?
? ? ?

 ?
 ?

?

1
? ? ?

2

?
?

?
? ? ?

 ?
 ?

?

?

?
? ? ?

2

?
?

?
? ? ?

 ?
 ?

?

?

Parallel External-Memory Graph Search
 Motivation Shared and Distributed Environments
 Parallel Delayed Duplicate Detection

 Parallel Expansion
 Distributed Sorting

 Parallel Structured Duplicate Detection
 Finding Disjoint Duplicate Detection Scopes
 Locking

Motivation

Parallel and External Memory Graph Search Synergies:
 They need partitioned access to large sets of data
 This data needs to be processed individually.

 Limited information transfer between two partitions
 Streaming in external memory programs relates to Communication

Queues in distributed programs
 (as communication often realized on files)
 Good external implementations often lead to good parallel

implementations

 Parallel Shared Memory Graph Search

 Single-core CPU Multi-core CPU

•  Parallelization is important for multi-core CPUs
•  But parallelizing graph-search algorithms such as breadth-first

search, Dijkstra’s algorithm, and A* is challenging
•  Issues: Load balancing, Locking, and most importantly …

External-Memory Graph Search 68

•  Same bottleneck in external-memory search

Bottleneck: Duplicate detection
 Duplicate paths cause parallelization overhead

A

C D

B B

C D D D D

Internal memory External memory

vs.

fast slow

A

Distributed Search over the Network

 Distributed setting provides more space.
 Experiments show that internal time dominates I/O.

Exploiting Independence
 Since each state in a Bucket is

independent of the other –
 they can be expanded in

parallel.
 Duplicates removal can be

distributed on different
processors.

 Bulk (Streamed) transfers
much better than single ones.

Parallel Breadth-First Frontier Search Enumerating
15-Puzzle (Korf and Schultze 2006)

 Hash function partitions both layers into files.
  If a layer is done, children files are renamed into parent files.
  For parallel processing a work queue contains parent files waiting to be

expanded, and child files waiting to be merged

Distributed Queue for Parallel Best-First Search
(Jabbar and E. 2006)

P0

P1

P2

<15,34, 0, 100>

<g, h, start byte, size>

<15,34, 20, 100>
TOP

<15,34, 40, 100>

<15,34, 60, 100>

Distributed Delayed Duplicate Detection
 Each state can appear several times in a bucket.
 A bucket has to be searched completely for the duplicates.

P0 P1 P2 P3

GOAL

Problem: Concurrent Writes !!!!

Sorted buffers
Single Files

Multiple Processors - Multiple Disks Variant

Sorted
buffers w.r.t
the hash val

Sorted Files

P1 P2 P3 P4

Divide w.r.t
the hash
ranges

Sorted
buffers from
every
processor

Sorted File

h0 ….. hk-1 hk ….. hl-1

3 1

4 6 5

2

8

7

9 10 11

12 13 14 15

Distributed Heuristic Evaluation (E., Jabbar,
Kissmann 2008)

 Assume one child processor for each tile one master processor

3 1

4 6 5

2

8

7

9 10 11

12 13 14 15

Distributed Heuristic Evaluation

Distributed Pattern Database Search
 Only pattern databases that include the client tile need to be

loaded on the client
 Because multiple tiles in pattern, the PDB is loaded on multiple

machines
  In 15-Puzzle with corner and fringe PDB this saves RAM in the

order of factor 2 on each machine, compared to loading all
  In 36-Puzzle with 6-tile pattern databases this saves RAM in the

order of factor 6 on each machine, compared to loading all
 Extends to additive pattern databases

Disjoint duplicate-detection scopes

B1 B0 B4

B0 B3 B1 B2

B8

B4 B5 B6 B7

B9 B10 B11

B12 B13 B14 B15

B0 B1

B4

B3 B2

B7

B2 B3 B7

B12

B8

B13 B15 B14

B11

B8 B12 B13
B11 B15 B14

Finding disjoint duplicate-detection scopes

B1 B0 B4

0 0 0 0

0

0 0 0 0

0 0

1

0 0 0 0

0 1

1

0 2

1

B2 B3 B7

0 1 0

B8 B12 B13
B11 B15 B14

1

2 2

0 1

2

2

2

2

1

2

2

2

2

2

0 1

1

1

0

1

0

2

3

3

2

B1
B5

B6

B4
B9

2

3

3

4

3

3

Implementation of Parallel SDD
 Hierarchical organization of hash tables

 One hash table for each abstract node
 Top-level hash func. = state-space projection func.

 Shared-memory management
 Minimum memory-allocation size m
 Memory wasted is bounded by O(m•#processors)

 External-memory version
 I/O-efficient order of node expansions
 I/O-efficient replacement strategy

Only needs a single mutex lock

B3 B1 B2

B8

B4 B5 B6 B7

B9 B10 B11

B12 B13 B14 B15

B0

System Verification
 Need for Verification of System
  (Automata-based) Model Checking
 Safety and Liveness

 External LTL Model Checking
 Alternative Approaches

Motivation
 Software MUST be correct!

Ariane-5 rocket destruction

Cost: €500 Million

Cause: over-flow while converting
64-bit to 16-bit integer

Failed interception of Scud by Patriot
missile

Cost: 28 dead 100 injured

Cause: precision lost in using 24-bit
registers while calculating
1/10 x elapsed time.

Model Checking
  Given

 A model of a system.
 A specification property

  Model Checking Problem: Does the
system satisfy the property ?

  An exhausting exploration of the state
space.

  Problem: How to cope with large state
spaces that do not fit into the main
memory?

  In Practice: successes in finding bugs.

search

specification

state rep.

modeling
language

A Typical Model Checker

Abstraction

A Model Checking Example

Eichlinghofen Campus Nord

(S)

Tech. Park

Campus Sued

Safety property: Cabin-2 will never go to green-track

Liveness property: Cabin-1 will eventually come to
Tech. Park after leaving Eichlinghofen.

Prog Cabin-1 control{
 If (track-1 is empty)
 Take track-1;
 Go forward;
 Leave track-1;
}

Prog Cabin-2 control{
 If (track-2 is empty)
 Take track-2;
 Go forward;
 Leave track-2;
}

Cab-2 Cab-1

track-1

track-3

Automata-based Model Checking

  Explore all the reachable combinations of the
system.

  Search for the state where a property is NOT
satisfied.

  Return a counter-example.
  Problem: 100 tracks and 10 cabins – Cabin-1

can be at 100 tracks, Cabin-2 at 99 tracks ≈ 1
731 030 950 000 states

Cabin-1 at Eich; Cabin-2 at Sued

Cabin-1 at track-1; Cabin-2 at Sued Cabin-1 at Eich; Cabin-2 at track-2

Cabin-1 at track-1; Cabin-2 at track-2 Cabin-1 at Sued; Cabin-2 at Sued

Cabin-1 at track-2; Cabin-2 at track-3

Liveness Property
  Product of Automata for System and for the Property

  Search for a path that visits an accepting state infinitely often.

 Nested Depth-first search look for a state that is already residing on the
stack.

Accepting State

Head of Lasso

Initial State

DFS does not show any locality of reference => Not Suitable for External Search!

Liveness as Safety (Schuppan and Biere, 2005)
  Explicitly unroll the lasso.

  Search for the head again.

Accepting State

Head of Lasso

Initial State

Head of Lasso

Heuristic Search for Liveness as Safety
 (Jabbar & E., 2006)

  Stage 1: For a state (s,s,0), perform a directed search for an accepting
state s’ in the never-claim.

 When found
 Spawn two children:

  (s, s, 1): Head of lasso found!
  (s, s, 0): Head of lasso not found!

  Stage 2: For a state (s, s’, 1), perform a directed search for s’.

s might not form a
cycle! – So keep

searching!

Heuristic for the 1st stage – Head of the Lasso
  We want to reach an accepting state in the never-claim faster!

Model

Never-claim

HN = min{δ(c,a1), δ(c,a2), δ(c,a3) }

c a1

a2

a3
δ is the shortest path distance
between two states and can be pre-
computed.

Heuristics for the 2nd stage – Close the Lasso
  We want to reach a particular state (in red) in both the model and the never-claim from my current

state (in blue).

Model

Never-claim

H = max{HN, HM }

c a1

a2

a3

External Directed LTL Model Checking
(E., Jabbar 2006)

Arrives at the
final state

Arrives again at
the same final

state

Same states in
both parts

Current
state

Already seen
final state

Large jumps due
to 2nd heuristic

I/Os of External A* for Liveness
External memory algorithms are evaluated on the

number of I/Os.
 Expansion: Linear I/O O(Scan(|V| x |F|))
 Delayed Duplicate Detection:

 Removing duplicates from the same buffer:
 O(sort(|E| x |F|))
 Subtracting previous levels: O(l x Scan(|V| x |F|)); where l is locality.

I/O Complexity = O(sort(|E|x|F|) + l x Scan(|V|x|F|))

Alternative Approaces:
Mini-States (E. et al. 2006)

  Keep pointer to a state in RAM or on Disk

  Keep pointer to the predecessor mini state

  constant size

 Disk RAM

 Expanding a State

Mini States Secondary Memory Cache

Internal Memory

 Flushing the Cache

Mini States Secondary Memory Cache

Internal Memory

Alternative Approaches
 Dill et al. (1996) – Cache like mechanism to flush states.
 Kristensen and Mailund (2003) – Sweep line algorithm. Saves the closed

list on disk in form of a spanning tree.
 Hammer and Weber (2006) – Hash-based partitioning of the state space.

Utilizes compression and Bloom filters.
 Bao and Jones (2005) – Hash-based partitioning with each partition

fitting into main memory.
 Barnat, Brim, Simecek (2007/08) Alternatives for External LTL – using

STXXL
 Lamborn and Hansen (2008) - Layered Duplicate Detection
 Evangilista (2008) - Dynamic Delayed Duplicate Detection

Advanced Topics
 External Value Iteration
 Semi-External-Memory Graph Search

 (Minimal) Perfect Hash Functions
 c-bit Semi-Externality

 Flash Memory (Solid State Disk)
 Immediate Duplicate Detection
 Hashing with Fore- and Background Memory

Markov Decision Processes

I

u1

u2

u3

a; c(a) = 2; p=9/10

Given: Finite State-Transition System

h=3

h=0

h=6

Probabilistic + Non-deterministic

Find: Optimal h-value assignment

h=1

Action a: 2 + 1/10 x 3 + 9/10 x 0 = 2.3

h=2.3

 c: 10 + 1 x 6 = 16

 b: 4 + 1 x 0 = 4

Uniform Search Model:
Deterministic

Non-Deterministic

Probabilistic

Internal Memory Value Iteration
ε-Optimal for solving
MDPs, AND/OR
trees…

Problem:
Needs to have the whole
state space in the main
memory.

External-Memory Algorithm for Value Iteration

 What makes value iteration different from the usual external-memory
search algorithms?

 Answer:
 Propagation of information from states to predecessors!

 Edges are more important than the states.

Ext-VI works on Edges:

External Memory Value Iteration
  Phase I: Generate the edge space by External BFS.
  Open(0) = Init; i = -1

  while (Open(i-1) != empty)
  Open(i) = Succ(Open(i-1))
  Externally-Sort-and-Remove-Duplicates(Open(i))
  for loc = 1 to Locality(Graph)

  Open(i) = Open(i) \ Open(i - loc)

  i++

  endwhile

Merge all BFS layers into one edge list on disk!
Opent = Open(0) U Open(1) U … U Open(DIAM)
Temp = Opent
Sort Opent wrt. the successors; Sort Temp wrt. the predecessors

Remove previous layers

Working of Ext-VI
Phase-II

{(Ø, 1), (1,2), (1,3), (1,4), (2,3), (2,5), (3,4), (3,8), (4,6), (5,6), (5,7), (6,9), (7,8), (7,10), (9,8), (9,10)}

{(Ø,1), (1,2), (1,3), (2,3), (1,4), (3,4), (2,5), (4,6), (5,6), (5,7), (3,8), (7,8), (9,8), (6,9), (7,10), (9,10)}

 3 2 2 2 2 1 2 0 1 1 1 1 0 0 0 0

 3 2 2 2 2 2 1 1 1 1 0 0 0 1 0 0

3 2 1 1 2 2 2 2 2 1 0 0 0 1 0 0

1

2

3

4

7

8

9

5

6

10 I T T
h=3

2

2

2

1

1

1

1

0 0

Temp : Edge List on Disk – Sorted on Predecessors

Opent : Edge List on Disk – Sorted on Successors

h=

h=

h’=

Alternate sorting and update until residual < epsilon

Complexity Analysis
  Phase-I: External Memory Breadth-First

Search.

  Expansion:
  Scanning the red bucket: O(scan(|E|))

  Duplicates Removal:
  Sorting the green bucket having one state for every edge

from the red bucket.
  Scanning and compaction: O(sort(|E|))

  Subtraction:
  Removing states of blue buckets (duplicates free) from the

green one: O(l x scan(|E|))
Complexity of Phase-I:

O(l x scan(|E|) + sort(|E|)) I/Os

…
…
…

Complexity Analysis
  Phase-II: Backward Update
 Update:

 Simple block-wise scanning.
 Scanning time for red and green files:

O(scan(|E|)) I/Os

  External Sort:
 Sorting the blue file with the updated

values to be used as red file later: O(sort(|
E|)) I/Os

Total Complexity of Phase-II:

For tmax iterations,

O(tmax x sort(|E|)) I/Os

Sorted on preds

Sorted on states

Updated h-values

………

Semi-External EM Search[E., Sanders, Simecek 2008]
 generate state space with external BFS
  construct perfect hash function (MPHF) from disk
 use bit-state hash table Visited[h(u)] in RAM and stack on disk to perform

cycle detection DFS
 I/Os for Ex-BFS + const. scans and sorts
Optimal counter-examples:
 I/Os for Ex-BFS + |F| scans
On-the-fly by iterative deepening (bounded MC)
 I/Os for Ex-BFS + max-BFS-depth scans

Semi-Externality
Graph search algorithm A is c-bit semi-external if for each implicit

graph G = (V,E) RAM requirements are at most O(vmax) + c·|
V| bits.

O(vmax) covers the RAM needed for program code, auxiliary
variables, and storage of a constant amount of vertices.

Lower bound
 log log|U|+(log|E|)|V|+O(log|V|) bits

Reduction in Practice

Flash-Memory Graph Search
[E., Sulewski, 2008, Barnat, Brim, E., Simecek, Sulewski 2008]

 Solid State Disk operate as trade-off between RAM and Hard Disk
 On NAND technology, random reads are fast, random writes are

slow

 With refined hashing, immediate duplicate detection becomes
feasible for external memory graph search (CPU usage > 70%)

 Beats DDD in large search depth ….

Compression Strategy

Conclusion

 Disk-based algorithms with I/O complexity analysis.
 Can pause-and-resume execution to add more hard disks.

 Error trace:
 No predecessor pointers!
 Save the predecessor with each state.
 Trace back from the goal state to the start state breadth-wise.

 Disk space eaten by duplicate states:
 Start “Early” Delayed Duplicate Detection

Applications & Future Extensions
Applications:
 Sequence Alignment Problem
 Parallel External C++ Model Checking

In Implementation:
 Partial-Order Reduction
 Pipelined I/Os – keep block in the memory as long as possible

